【題目】如圖,在邊長為3cm的正方形ABCD中,點(diǎn)E為BC邊上的任意一點(diǎn),AF⊥AE,AF交CD的延長線于F,則四邊形AFCE的面積為cm2 .
【答案】9
【解析】解:∵四邊形ABCD是正方形, ∴AD=AB,∠ADF=∠DAB=∠B=90°,
∴∠BAE+∠DAE=90°,
∵AF⊥AE,
∴∠DAF+∠DAE=90°,
∴∠BAE=∠DAF,
在△BAE和△DAF中,
,
∴△BAE≌△DAF(ASA),
∴S△BAE=S△DAF ,
∴S四邊形AFCE=S△DAF+S四邊形ADCE=S△BAE+S四邊形ADCE=S正方形=3×3=9(cm2).
所以答案是:9.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).
(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;
(2)寫出△A1B1C1 各頂點(diǎn)坐標(biāo);
(3)求△ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項(xiàng)式(a2-4a+2)(a2-4a+6)+4進(jìn)行因式分解的過程:
解:設(shè)a2-4a=y(tǒng),則
原式=(y+2)(y+6)+4(第一步)
=y(tǒng)2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)該同學(xué)因式分解的結(jié)果是否徹底:________(填“徹底”或“不徹底”);
(2)若不徹底,請你直接寫出因式分解的最后結(jié)果:________;
(3)請你模仿以上方法對多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC,△ABC≌△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn),觀察并猜想線段EA1與FC有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如今,網(wǎng)上購物已成為一種新的消費(fèi)時(shí)尚,精品書店想購買一種賀年卡在元旦時(shí)銷售,在互聯(lián)網(wǎng)上搜索了甲、乙兩家網(wǎng)
店(如圖所示),已知兩家網(wǎng)店的這種賀年卡的質(zhì)量相同,請看圖回答下列問題:
(1)假若精品書店想購買x張賀年卡,那么在甲、乙兩家網(wǎng)店分別需要花多少錢(用含有x的式子表示)?(提示:如需付運(yùn)費(fèi)時(shí)運(yùn)費(fèi)只需付一次,即8元)
(2)精品書店打算購買300張賀年卡,選擇哪家網(wǎng)店更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( 。
A.∠ADE=20°
B.∠ADE=30°
C.∠ADE=∠ADC
D.∠ADE=∠ADC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在BC上,求證:△ABC是等腰三角形.
(2)如圖2,若點(diǎn)O在△ABC內(nèi)部,求證:AB=AC.
(3)若點(diǎn)O點(diǎn)在△ABC的外部,△ABC是等腰三角形還成立嗎?請畫圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)M、N在邊BC上.
(1)如圖1,如果AM=AN,求證:BM=CN;
(2)如圖2,如果M、N是邊BC上任意兩點(diǎn),并滿足∠MAN=45°,那么線段BM、MN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,請證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)過點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長CF交AB于點(diǎn)C,若ACAB=12,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com