【題目】某中學(xué)校團(tuán)委開展“關(guān)愛殘疾兒童”愛心捐書活動(dòng),全校師生踴躍捐贈(zèng)各類書籍共6000本.為了解各類書籍的分布情況,從中隨機(jī)抽取了部分書籍分四類進(jìn)行統(tǒng)計(jì):A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計(jì)結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
1)這次統(tǒng)計(jì)共抽取了200____本書籍,扇形統(tǒng)計(jì)圖中的m=40____,∠α的度數(shù)是___
2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
3)估計(jì)全校師生共捐贈(zèng)了多少本文學(xué)類書籍.

【答案】1200、40、36°;(2)見解析;(31800本.

【解析】

1)由A類別數(shù)量除以其所占百分比可得總數(shù)量,用C類別數(shù)量除以總數(shù)量可得m的值,再用360°乘以D類別數(shù)量所占比例即可得;
2)根據(jù)各類別數(shù)量之和等于總數(shù)量求得B的數(shù)量,據(jù)此可補(bǔ)全圖形;
3)用總數(shù)量乘以樣本中B類別人數(shù)所占比例.

1)本次統(tǒng)計(jì)共抽取書籍40÷20%=200本,
扇形統(tǒng)計(jì)圖中m%=×100%=40%,即m=40;
α=360°×=36°
故答案為:200、4036°;

2B類別人數(shù)為200-40+80+20=60,
補(bǔ)全圖形如下:


3)估計(jì)全校師生共捐贈(zèng)書籍6000×=1800本.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市規(guī)定:出租車起步價(jià)所包含的路程為0~5,超過5的部分按每千米另收費(fèi).甲說:“我乘這種出租車走了11,付了17元.”乙說:“我乘這種出租車走了23,付了35元.”

1)出租車的起步價(jià)是多少元?超過5后每千米的收費(fèi)多少元?

2)小李從學(xué)校乘這種出租車車回到家付費(fèi)14元,學(xué)校到小李家的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下判斷正確的是( ).

A.三角形的一個(gè)外角等于兩個(gè)內(nèi)角的和B.三角形的外角大于任何一個(gè)內(nèi)角

C.一個(gè)三角形中,至少有一個(gè)角大于或等于60°D.三角形的外角是內(nèi)角的鄰補(bǔ)角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林部門決定利用現(xiàn)有的349盆甲種花卉和295盆乙種花卉搭配A. B兩種園藝造型共50個(gè),擺放在迎賓大道兩側(cè)。已知搭配一個(gè)A種造型需甲種花卉8盆,乙種花卉4盆;搭配一個(gè)B種造型需甲種花卉5盆,乙種花卉9盆。

(1)某校九年級(jí)某班課外活動(dòng)小組承接了這個(gè)園藝造型搭配方案的設(shè)計(jì),問符合題意的搭配方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來;

(2)若搭配一個(gè)A種造型的成本是200,搭配一個(gè)B種造型的成本是360,試說明(1)中哪種方案成本最低,最低成本是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】袋小麥稱后記錄如下表(單位:),要求每袋小麥的重量控制在。即每袋小麥的重量不高于,不低于.

小麥的袋數(shù)

小麥的重量

1)這袋小麥中,符合要求的有 袋;

2)將符合要求的小麥以為標(biāo)準(zhǔn),超出部分記為正,不足的記為負(fù)數(shù);

3)求符合要求的小麥一共多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)定義:直角三角形兩直角邊的平方和等于斜邊的平方。如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:RtABC,C=90°,AC=8,AB=10,直接寫出BC2=___.

(2)應(yīng)用:已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)PAD邊上的一點(diǎn),AP=AD,請(qǐng)利用兩點(diǎn)之間線段最短這一原理,在線段AC上畫出一點(diǎn)M,使MP+MD最小,并直接寫出最小值的平方為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)PBC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)EF,給出以下四個(gè)結(jié)論:
AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF=SABC;④EF=AP.上述結(jié)論始終正確的有(

②③

A.①②③④B.①②③C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市救災(zāi)物資儲(chǔ)備倉(cāng)庫(kù)共存儲(chǔ)了A,BC三類救災(zāi)物資,下面的統(tǒng)計(jì)圖是三類物資存儲(chǔ)量的不完整統(tǒng)計(jì)圖.

1)求A類物資的存儲(chǔ)量,并將兩個(gè)統(tǒng)計(jì)表補(bǔ)充完整;

2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將AB兩類物資全部運(yùn)往某災(zāi)區(qū).已知甲種貨車最多可裝A類物資10噸和B類物資40噸,乙種貨車最多可裝A、B類物資各20噸,則物資儲(chǔ)備倉(cāng)庫(kù)安排甲、乙兩種貨車有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將長(zhǎng)為10的線段OA繞點(diǎn)O旋轉(zhuǎn)得到OB,點(diǎn)A的運(yùn)動(dòng)軌跡為,P是半徑OB上一動(dòng)點(diǎn),Q上的一動(dòng)點(diǎn),連接PQ

當(dāng)______度時(shí),PQ有最大值,最大值為______

如圖2,若POB中點(diǎn),且于點(diǎn)P,求的長(zhǎng);

如圖3,將扇形AOB沿折痕AP折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)恰好落在OA的延長(zhǎng)線上,求陰影部分面積.

如圖4,將扇形OAB沿PQ折疊,使折疊后的弧恰好與半徑OA相切,切點(diǎn)為C,若,求點(diǎn)O到折痕PQ的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案