A
分析:由四邊形ABCD是矩形,易證得△ADQ≌△ADE,即可得DQ=DE;利用等角的余角相等,可得∠BAP=∠AQE正確,又因為∠AQD不一定等于∠PQC,故AQ⊥PQ不能確定,DQ與CP的值沒法確定,EQ=2CP不一定正確;易證得△ADE∽△PCE,即可得DE•PC=EC•AD,即可得S
△APQ=S
矩形ABCD.
解答:∵四邊形ABCD是矩形,
∴∠ADC=90°,
∴∠ADQ=∠ADE=90°,
在△ADQ和△ADE中,
∵
,
∴△ADQ≌△ADE(ASA),
∴DQ=DE;故①正確;
∵∠BAP+∠PAD=∠AQE+∠QAD=90°,∠PAD=∠QAD,
∴∠BAP=∠AQE,故②正確;
∵當(dāng)∠AQD=∠PQC時,可得∠AQP=90°,
∴此兩角的值不能確定,故③錯誤;
∵DQ=DE,
∴EQ=2DQ,
∵DQ與CP不一定相等,故④錯誤;
∵AD∥BC,
∴∠DAE=∠CPE,
∵∠AED=∠PEC,
∴△ADE∽△PCE,
∴AD:PC=DE:CE,
∴DE•PC=EC•AD,
∵S
△APQ=S
△AEQ+S
△PEQ=
QE•AD+
QE•PC=DE•AD+DE•PC
S
矩形ABCD=S
△ADE+S
四邊形ABCE=
DE•AD+
(EC+AB)•BC=
DE•AD+
(DE+2EC)•AD=
DE•AD+
DE•AD+EC•AD=DE•AD+EC•AD,
∴S
△APQ=S
矩形ABCD.故⑤正確.
故選A.
點評:此題考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形的性質(zhì)以及三角形面積的求解方法.此題綜合性較強,難度較大,注意數(shù)形結(jié)合思想的應(yīng)用.