【題目】如圖,射線OA表示的方向是北偏東15°,射線OB表示的方向是北偏西40°.
(1)若∠AOC=∠AOB,則射線OC表示的方向是 ;
(2)若射線OD是射線OB的反向延長線,則射線OD表示的方向是 ;
(3)∠BOD可以看作是由OB繞點O逆時針方向旋轉(zhuǎn)至OD形成的角,作∠BOD的平分線OE;
(4)在(1),(2),(3)的條件下,求∠COE的度數(shù).
【答案】(1)北偏東70° (2)南偏東40° (3)見解析(4)160°
【解析】
(1)先求出∠AOB=55°,再求得∠AOC的度數(shù),即可確定OC的方向;
(2)由對頂角性質(zhì)得∠FOD=40,可得射線OD表示的方向;
(3)通過作線段垂直平分線可得;
(4)根據(jù)射線OE平分∠BOD,即可求出∠DOE=90°再利用∠DOC=180-2×55°,求出答案即可.
(1)∵OB的方向是北偏西40°,OA的方向是北偏東15°,
∴∠NOB=40°,∠NOA=15°,
∴∠AOB=∠NOB+∠NOA=55°,
∵∠AOB=∠AOC,
∴∠AOC=55°,
∴∠NOC=∠NOA+∠AOC=70°,
∴OC的方向是北偏東70°;
(2) 由對頂角性質(zhì)得∠FOD=∠NOB=40,可得射線OD表示的方向是:南偏東40°.
(3)如圖
(4)∵∠AOB=55°,∠AOC=∠AOB,
∴∠BOC=110°.
又∵射線OD是OB的反向延長線,
∴∠BOD=180°.
∴∠COD=180°-110°=70°.
∵射線OE平分∠BOD,
∴∠DOE=90°.
∴∠COE=∠DOE+∠COD=90°+70°=160°.
科目:初中數(shù)學 來源: 題型:
【題目】“保護好環(huán)境,拒絕冒黑煙”.某市公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預計在該線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對兩面的點數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0)
(1)求m的值及拋物線的頂點坐標.
(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,BC⊥AF于點C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關系(不考慮點P與點A,D,C重合的情況)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對下列代數(shù)式作出解釋,其中不正確的是( )
A. a-b:今年小明b歲,小明的爸爸a歲,小明比他爸爸小(a-b)歲
B. a-b:今年小明b歲,小明的爸爸a歲,則小明出生時,他爸爸為(a-b)歲
C. ab:長方形的長為acm,寬為bcm,長方形的面積為ab
D. ab:三角形的一邊長為acm,這邊上的高為bcm,此三角形的面積為ab
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(0,﹣1),B(0,3),點M為第二象限內(nèi)一點,且點M的坐標為(t,1).
(1)請用含t的式子表示△ABM的面積;
(2)當t=﹣2時,在x軸的正半軸上有一點P,使得△BMP的面積與△ABM的面積相等,請求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分別為點E,F.
(1)求證:△ADE≌△CBF;
(2)若AC與BD相交于點O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面中,O為原點,點A的坐標為(20,0),點B在第一象限內(nèi),BO=10,sin∠BOA= .
(1)在圖中,求作△ABO的外接圓(尺規(guī)作圖,不寫作法但需保留作圖痕跡);
(2)求點B的坐標與cos∠BAO的值;
(3)若A,O位置不變,將點B沿x軸向右平移使得△ABO為等腰三角形,請求出平移后點B的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com