【題目】暴雨過(guò)后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn). 半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問(wèn)兩隊(duì)的平均速度分別是多少?

【答案】第一隊(duì)的平均速度是60千米/時(shí),第二隊(duì)的平均速度是90千米/時(shí)

【解析】試題分析:設(shè)第一隊(duì)的平均速度是x千米/時(shí),則第二隊(duì)的平均速度是1.5x千米/時(shí).根據(jù)半小時(shí)后,第二隊(duì)前去支援,結(jié)果兩隊(duì)同時(shí)到達(dá),即第一隊(duì)與第二隊(duì)所用時(shí)間的差是小時(shí),即可列方程求解.

設(shè)第一隊(duì)的平均速度是x千米/時(shí),則第二隊(duì)的平均速度是1.5x千米/時(shí),根據(jù)題意得:

,解得x=60

經(jīng)檢驗(yàn),x=60是所列方程的根,

1.5x=1.5×60=90(千米/時(shí)).

答:第一隊(duì)的平均速度是60千米/時(shí),第二隊(duì)的平均速度是90千米/時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線EF交BC于點(diǎn)D,交AB于點(diǎn)E,且BE=BF,添加一個(gè)條件,仍不能證明四邊形BECF為正方形的是(

A.BC=AC
B.CF⊥BF
C.BD=DF
D.AC=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南中國(guó)海是中國(guó)固有領(lǐng)海,我漁政船經(jīng)常在此海域執(zhí)勤巡察.一天我漁政船停在小島A北偏西37°方向的B處,觀察A島周邊海域.據(jù)測(cè)算,漁政船距A島的距離AB長(zhǎng)為10海里.此時(shí)位于A島正西方向C處的我漁船遭到某國(guó)軍艦的襲擾,船長(zhǎng)發(fā)現(xiàn)在其北偏東50°的方向上有我方漁政船,便發(fā)出緊急求救信號(hào).漁政船接警后,立即沿BC航線以每小時(shí)30海里的速度前往救助,問(wèn)漁政船大約需多少分鐘能到達(dá)漁船所在的C處?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問(wèn)題:

(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請(qǐng)直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請(qǐng)寫出證明過(guò)程,若不成立,請(qǐng)說(shuō)明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請(qǐng)判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸是一個(gè)非常重要的數(shù)學(xué)工具,它使數(shù)和數(shù)軸上的點(diǎn)建立起對(duì)應(yīng)關(guān)系,揭示了數(shù)與點(diǎn)之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ)。小白在草稿紙上畫了一條數(shù)軸進(jìn)行操作探究:

操作一:

(1)折疊紙面,若使1表示的點(diǎn)與﹣1表示的點(diǎn)重合,則﹣2表示的點(diǎn)與_______表示的點(diǎn)重合;

操作二:

(2)折疊紙面,若使1表示的點(diǎn)與﹣3表示的點(diǎn)重合,回答以下問(wèn)題:

①3表示的點(diǎn)與_______表示的點(diǎn)重合;

②若數(shù)軸上A、B兩點(diǎn)之間距離為7(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,則A、B兩點(diǎn)表示的數(shù)分別是______________;

操作三:

(3)在數(shù)軸上剪下9個(gè)單位長(zhǎng)度(從﹣1到8)的一條線段,并把這條線段沿某點(diǎn)折疊,然后在重疊部分某處剪一刀得到三條線段(例如下圖). 若這三條線段的長(zhǎng)度之比為1:1:2,則折痕處對(duì)應(yīng)的點(diǎn)所表示的數(shù)可能是_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:ab﹣a2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在埃及新投產(chǎn)一座雞飼料廠,年生產(chǎn)飼料可飼養(yǎng)57000000只肉雞,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法可表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD,點(diǎn)M,N分別在AB,BCBMN沿MN翻折FMN,MFADFNDC,B__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年泰州市實(shí)現(xiàn)生產(chǎn)總值(GDP5107億元,5107億元用科學(xué)記數(shù)法表示為_____元.

查看答案和解析>>

同步練習(xí)冊(cè)答案