【題目】如圖,已知∠MAN=30°,點(diǎn)B在邊AM上,且AB=4,點(diǎn)P從點(diǎn)A出發(fā)沿射線AN方向運(yùn)動(dòng),在邊AN上取點(diǎn)C(點(diǎn)C在點(diǎn)P右側(cè)),連結(jié)BP,BC.設(shè)PC=m,當(dāng)△BPC成為等腰三角形的個(gè)數(shù)恰好有3個(gè)時(shí),m的值為_____.
【答案】4或2或4<m≤12
【解析】
如圖,作BH⊥AN于H.當(dāng)△BPC是等邊三角形時(shí),△BPC成為等腰三角形的個(gè)數(shù)恰好有3個(gè).
解:如圖,作BH⊥AN于H.①當(dāng)△BPC是等邊三角形時(shí),△BPC成為等腰三角形的個(gè)數(shù)恰好有3個(gè).
在Rt△ABH中,∵AB=4,∠A=30°,
∴BH= AB=2,
∵△BPC是等邊三角形,BH⊥PC,
∴∠PBH=30°,PH=HC=BHtan30°=2,
∴PC=2PH=4,
②當(dāng)PC=BH=2時(shí),△BPC成為等腰三角形的個(gè)數(shù)恰好有3個(gè).
③當(dāng)4√3<m≤12時(shí),△BPC成為等腰三角形的個(gè)數(shù)恰好有3個(gè).
故答案為4或2或4<m≤12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E是CD的中點(diǎn),將△ADE沿AE翻折至△AFE,連接CF,則CF的長(zhǎng)度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.
(1)收集數(shù)據(jù):從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績(jī)x 人數(shù) 班級(jí) | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m=______,n=______.
(3)分析數(shù)據(jù):
①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲班 | 72 | x | 75 |
乙班 | 72 | 70 | y |
在表中:x=______,y=______.
②若規(guī)定測(cè)試成績(jī)?cè)?/span>80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有______人.
③現(xiàn)從甲班指定的2名學(xué)生(1男1女),乙班指定的3名學(xué)生(2男1女)中分別抽取1名學(xué)生去參加上級(jí)部門組織的身體素質(zhì)測(cè)試,用樹狀圖和列表法求抽到的2名同學(xué)是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7min同時(shí)到達(dá)C點(diǎn),甲機(jī)器人前3分鐘以a m/min的速度行走,乙機(jī)器人始終以60m/min的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(m)與他們的行走時(shí)間x(min)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問題:
(1)A、B兩點(diǎn)之間的距離是____m,A、C兩點(diǎn)之間的距離是____m,a=____m/min;
(2)求線段EF所在直線的函數(shù)解析式;
(3)設(shè)線段FG∥x軸.
①當(dāng)3≤x≤4時(shí),甲機(jī)器人的速度為____m/min;
②直接寫出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,拋物線y=-x2-x-3交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C.
(1)求直線AC的解析式;
(2)①點(diǎn)P是直線AC上方拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、點(diǎn)C重合),過點(diǎn)P作PD⊥AC于點(diǎn)D,求PD的最大值;
②當(dāng)線段PD的長(zhǎng)度最大時(shí),點(diǎn)Q從點(diǎn)P出發(fā),先以每秒1個(gè)單位長(zhǎng)度的速度沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到y軸上的點(diǎn)M處,再沿MC以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)C停止,當(dāng)點(diǎn)Q在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少時(shí),求點(diǎn)M的坐標(biāo);
(3)如圖②,將△BOC沿直線BC平移,點(diǎn)B平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)B',點(diǎn)O平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)O',點(diǎn)C平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)C',點(diǎn)S是坐標(biāo)平面內(nèi)一點(diǎn),若以A、C、O'、S為頂點(diǎn)的四邊形是菱形,求出所有符合條件的點(diǎn)O'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(﹣3,1),點(diǎn)B(0,5),過點(diǎn)A作直線l⊥AB,過點(diǎn)B作BD∥l,交x軸于點(diǎn)D,再以點(diǎn)B為圓心,BD長(zhǎng)為半徑作弧,交直線l于點(diǎn)C(點(diǎn)C位于第四象限),連結(jié)BC,CD.
(1)求線段AB的長(zhǎng).
(2)點(diǎn)M是線段BC上一點(diǎn),且BM=CA,求DM的長(zhǎng).
(3)點(diǎn)M是線段BC上的動(dòng)點(diǎn).
①若點(diǎn)N是線段AC上的動(dòng)點(diǎn),且BM=CN,求DM+DN的最小值.
②若點(diǎn)N是射線AC上的動(dòng)點(diǎn),且BM=CN,求DM+DN的最小值(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國(guó)家有關(guān)開展中小學(xué)生“課后服務(wù)”的政策,某學(xué)校課后開設(shè)了A:課后作業(yè)輔導(dǎo)、B:書法、C:閱讀、D:繪畫、E:器樂,五門課程供學(xué)生選擇;其中A(必選項(xiàng)目),再?gòu)?/span>B、C、D、E中選兩門課程.
(1)若學(xué)生小玲第一次選一門課程,直接寫出學(xué)生小玲選中項(xiàng)目E的概率;
(2)若學(xué)生小強(qiáng)和小明在選項(xiàng)的過程中,第一次都是選了項(xiàng)目E,那么他倆第二次同時(shí)選擇書法或繪畫的概率是多少?請(qǐng)用列表法或畫樹狀圖的方法加以說明并列出所有等可能的結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 為檢測(cè)某市正在銷售的酸奶質(zhì)量,應(yīng)該采用普查的方式
B. 若兩名同學(xué)連續(xù)六次數(shù)學(xué)測(cè)試成績(jī)的平均分相同,則方差較大的同學(xué)的數(shù)學(xué)成績(jī)更穩(wěn)定
C. 拋擲一個(gè)正方體骰子,朝上的面的點(diǎn)數(shù)為偶數(shù)的概率是
D. “打開電視,正在播放廣告”是必然事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時(shí)距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com