某商場將進貨價為30元的臺燈以40元的銷售價售出,平均每月能售出600個.市場調研表明:當銷售價每上漲1元時,其銷售量就將減少10個.若設每個臺燈的銷售價上漲a元.
(1)試用含a的代數(shù)式填空:
①漲價后,每個臺燈的銷售價為
40+a
40+a
元;
②漲價后,每個臺燈的利潤為
10+a
10+a
元;
③漲價后,商場的臺燈平均每月的銷售量為
600-10a
600-10a
臺.
(2)如果商場要想銷售利潤平均每月達到10000元,商場經(jīng)理甲說“在原售價每臺40元的基礎上再上漲40元,可以完成任務”,商場經(jīng)理乙說“不用漲那么多,在原售價每臺40元的基礎上再上漲10元就可以了”,試判斷經(jīng)理甲與乙的說法是否正確,并說明理由.
分析:(1)根據(jù)進價和售價以及每上漲1元時,其銷售量就將減少10個之間的關系,列出代數(shù)式即可;
(2)根據(jù)平均每月能售出600個和銷售價每上漲1元時,其銷售量就將減少10個之間的關系列出式子,再分兩種情況討論,求出每月的銷售利潤,再進行比較即可.
解答:解:(1)①漲價后,每個臺燈的銷售價為40+a(元);
②漲價后,每個臺燈的利潤為40+a-30=10+a(元);
③漲價后,商場的臺燈平均每月的銷售量為(600-10a)臺;
(2)甲與乙的說法均正確,理由如下:
依題意可得該商場臺燈的月銷售利潤為:(600-10a)(10+a);
當a=40時,(600-10a)(10+a)=(600-10×40)(10+40)=10000(元);
當a=10時,(600-10a)(10+a)=(600-10×10)(10+10)=10000(元);
故經(jīng)理甲與乙的說法均正確.
故答案為:40+a,10+a,600-10a.
點評:此題考查了列代數(shù)式,解決問題的關鍵是讀懂題意,找到所求的量的關系,列出代數(shù)式,求出代數(shù)式的解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某商場將進貨價為30元的書包以40元售出,平均每月能售出600個,調查表明:這種書包的售價每上漲1元,其銷售量就減少10個.
(1)為了使平均每月有10000元的銷售利潤,這種書包的售價應定為多少元?
(2)10000元的利潤是否為最大利潤?如果是,請說明理由;如果不是,請求出最大利潤,并指出此時書包的售價為多少元?
(3)請分析并回答售價在什么范圍內商家就可以獲得利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、某商場將進貨價為30元的臺燈以40元售出,平均每月能售出600個.調查表明:這種臺燈的售價每上漲1元,其銷售量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,商場決定采取調控價格的措施,擴大銷售量,減少庫存,這種臺燈的售價應定為多少元?這時應進臺燈多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、某商場將進貨價為30元的臺燈以40元售出,平均每月能售出600個,調查表明:售價在40~60元范圍內,這種臺燈的售價每上漲1元,其銷售量就將減少10個.為了實現(xiàn)平均每月10000元的銷售利潤,這種臺燈的售價應定為多少?這時應進臺燈多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場將進貨價為30元的書包以40元售出,平均每月能售出600個.調查表明:這種書包的售價每上漲1元,其銷售量就減少10個,物價局規(guī)定該商品的利潤率不得超過100%.
(1)請寫出每月售出書包利潤y(元)與每個書包漲價x(元)間的函數(shù)關系式;
(2)為了獲得最大的利潤,應將該書包的售價定為多少?最大利潤是多少?
(3)請分析并回答售價在什么范圍內商家獲得的月利潤不低于8250元?

查看答案和解析>>

同步練習冊答案