如圖,拋物線軸相交于點(diǎn)、,且經(jīng)過點(diǎn)(5,4).該拋物線頂點(diǎn)為

(1)求的值和該拋物線頂點(diǎn)的坐標(biāo).
(2)求的面積;
(3)若將該拋物線先向左平移4個(gè)單位,再向上平移2個(gè)單位,求出平移后拋物線的解析式.

(1)點(diǎn)的坐標(biāo)為(,) (2) (3)

解析試題分析:(1)根據(jù)C點(diǎn)的坐標(biāo)代入拋物線解析式y(tǒng)=ax2-5x+4a,求出a,即可得出拋物線解析式,再根據(jù)拋物線頂點(diǎn)坐標(biāo)公式即可求出答案;
(2)根據(jù)y=x2-5x+4中y=0時(shí),求出x的值,從而得出A、B兩點(diǎn)的坐標(biāo),再根據(jù)三角形的面積公式得出△PAB的面積;
(3)根據(jù)拋物線原頂點(diǎn)坐標(biāo)和平移后的頂點(diǎn),即可得出平移后拋物線解析式;
解:(1)將(5,4)的坐標(biāo)代入拋物線解析式, 得;                         
∴拋物線解析式
∴點(diǎn)的坐標(biāo)為();                 
(2)∵當(dāng)時(shí),,
、兩點(diǎn)的坐標(biāo)為(1,0),(4,0),           
                   
(3)∵拋物線原頂點(diǎn)坐標(biāo)為(,),
平移后的頂點(diǎn)為()
∴平移后拋物線解析式
考點(diǎn):用待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質(zhì),二次函數(shù)圖象與幾何變化,三角形面積.
點(diǎn)評(píng):此題考查了待定系數(shù)法求二次函數(shù)的解析式;關(guān)鍵是能根據(jù)二次函數(shù)的性質(zhì),三角形的面積,二次函數(shù)的圖象與幾何變換分別進(jìn)行求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.

(1)直接寫出、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?

②設(shè)的面積為,求的函數(shù)關(guān)系式

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省泰興市黃橋區(qū)九年級(jí)中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,拋物線軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.

【小題1】直接寫出三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
【小題2】連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為;
①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?
②設(shè)的面積為,求的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰興市黃橋區(qū)九年級(jí)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.

1.直接寫出、、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

2.連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為;

①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?

②設(shè)的面積為,求的函數(shù)關(guān)系式.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011年重慶一中初三下學(xué)期第一次考前模擬數(shù)學(xué)試卷 題型:解答題

如圖,拋物線軸相交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.

(1)直接寫出、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;

(2)連接,與拋物線的對(duì)稱軸交于點(diǎn),點(diǎn)為線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)交拋物線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為;

①用含的代數(shù)式表示線段的長(zhǎng),并求出當(dāng)為何值時(shí),四邊形為平行四邊形?

②設(shè)的面積為,求的函數(shù)關(guān)系式

 

查看答案和解析>>

同步練習(xí)冊(cè)答案