某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)存在一次函數(shù)關系:y=-x+120.
(1)若商場要想獲得800元的利潤,則銷售單價應是多少元?
(2)若設該商場獲得利潤為W元,當銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(1)設商場獲得利潤為a,由題意得:a=yx-60y=y(x-60)
又∵y=-x+120,
∴a=(-x+120)(x-60)
當商場要想獲得800元的利潤,即a=800
∴(-x+120)(x-60)=800
解得:x=100或80,
∴若商場要想獲得800元的利潤,則銷售單價應是100元或80元;

(2)由(1)可知W=(x-60)•(-x+120)
=-x2+180x-7200
=-(x-90)2+900,
∵拋物線的開口向下,函數(shù)有最大值,
∴當銷售單價定為90元時,商場可獲得最大利潤,最大利潤是900元.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知如圖,對稱軸為直線x=4的拋物線y=ax2+2x與x軸相交于點B、O.
(1)求拋物線的解析式.
(2)連接AB,平移AB所在的直線,使其經(jīng)過原點O,得到直線l.點P是l上一動點,當△PAB的周長最小時,求點P的坐標.
(3)當△PAB的周長最小時,在直線AB的上方是否存在一點Q,使以A,B,Q為頂點的三角形與△POB相似?若存在,直接寫出點Q的坐標;若不存在,說明理由.(規(guī)定:點Q的對應頂點不為點O)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的解析式和對稱軸;
(2)設點P是直線l上的一個動點,當△PAC是以AC為斜邊的Rt△時,求點P的坐標;
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由;
(4)設過點A的直線與拋物線在第一象限的交點為N,當△ACN的面積為
15
8
時,求直線AN的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),其對稱軸為直線x=2.
(1)求拋物線的解析式;
(2)若點P為拋物線的頂點,求△PBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,有一個橫截面是拋物線的運河,一次,運河管理員將一根長6m的鋼管(AB)一端在運河底部A點,另一端露出水面并靠在運河邊緣的B點,發(fā)現(xiàn)鋼管4m浸沒在水中(AC=4米),露出水面部分的鋼管BC與水面部分的鋼管BC與水面成30°的夾角(鋼管與拋物線的橫截面在同一平面內(nèi))
(1)以水面所在直線為x軸,建立如圖所示的直角坐標系,求該運河橫截面的拋物線解析式;
(2)若有一艘貨船從當中通過,已知貨船底部最寬處為12米,吃水深(即船底與水面的距離)為1米,此時貨船是否能安全通過該運河?若能,請說明理由;若不能,則需上游開閘放水提高水位,當水位上升多少米時,貨船能順利通過運河?(船與河床之間的縫隙忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線y=-x2+bx+c的圖象如圖所示,則此拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某灌溉設備的噴頭B高出地面1.25m,噴出的拋物線形水流在與噴頭底部A的距離為1m處達到距地面最大高度2.25m.試在恰當?shù)闹苯亲鴺讼抵星蟪雠c該拋物線水流對應的二次函數(shù)關系式.
小明在解答下圖所示的問題時,寫下了如下解答過程:

①以水流的最高點為原點,過原點的水平線為橫軸,過原點的鉛垂線為縱軸建立如圖所示的平面直角坐標系;
②設拋物線的解析式為y=ax2;
③則B點的坐標為(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
問:(1)小明的解答過程是否正確,若不正確,請你加以改正;
(2)噴出的水流能否澆灌到地面上距離A點3.5m的莊稼上(圖上莊稼在A點的右側(cè),莊稼的高度不計),若不能請你在上圖所示的坐標系中將噴頭B上下或左右平移,問至少要平移多少距離才能澆灌到地面的莊稼,并求出此時噴出的拋物線形水流的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖.已知二次函數(shù)y=-x2+bx+3的圖象與x軸的一個交點為A(4,0),與y軸交于點B.
(1)求此二次函數(shù)關系式和點B的坐標;
(2)在x軸的正半軸上是否存在點P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知等邊三角形的邊長為x(cm),則此三角形的面積S(cm2)關于x的函數(shù)關系式是______.

查看答案和解析>>

同步練習冊答案