【題目】如圖,以△ABCBC邊上一點(diǎn)O為圓心的圓,經(jīng)過A、B兩點(diǎn),且與BC邊交于點(diǎn)E,DBE的下半圓弧的中點(diǎn),連接ADBCF,若AC=FC.

(1)求證:AC是⊙O的切線:

(2)BF=8,DF=,求⊙O的半徑;

(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結(jié)果保留根號(hào))

【答案】(1)證明見解析;(2)6;(3).

【解析】

(1)連接OA、OD,如圖,利用垂徑定理的推論得到ODBE,再利用CA=CF得到

CAF= CFA,然后利用角度的代換可證明∠OAD+CAF=,OAAC,從而根據(jù)

切線的判定定理得到結(jié)論;

(2)設(shè)⊙0的半徑為r,OF=8-r,RtODF中利用勾股定理得到

,然后解方程即可;

(3)先證明△BOD為等腰直角三角形得到OB=,OA=,再利用圓周角定理得到∠AOB=2ADB=,則∠AOE=,接著在RtOAC中計(jì)算出AC,然后用一個(gè)直角三角形的面積減去一個(gè)扇形的面積去計(jì)算陰影部分的面積.

(1)證明:連接OA、OD,如圖,

DBE的下半圓弧的中點(diǎn),

ODBE,

∴∠ODF+OFD=90°,

CA=CF,

∴∠CAF=CFA,

而∠CFA=OFD,

∴∠ODF+CAF=90°,

OA=OD,

∴∠ODA=OAD,

∴∠OAD+CAF=90°,即∠OAC=90°,

OAAC,

AC是⊙O的切線;

(2)解:設(shè)⊙O的半徑為r,則OF=8﹣r,

RtODF中,(8﹣r)2+r2=(2,解得r1=6,r2=2(舍去),

即⊙O的半徑為6;

(3)解:∵∠BOD=90°,OB=OD,

∴△BOD為等腰直角三角形,

OB=BD=

OA=,

∵∠AOB=2ADB=120°,

∴∠AOE=60°,

RtOAC中,AC=OA=

∴陰影部分的面積==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點(diǎn)C射進(jìn)房間的地板F處,中午太陽光恰好能從窗戶的最低點(diǎn)D射進(jìn)房間的地板E處,小明測得窗子距地面的高度OD0.8 m,窗高CD1.2 m,并測得OE0.8 mOF3 m,求圍墻AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個(gè)小正方形和2個(gè)小長方形(即圖中陰影部分),將剩余部分折成一個(gè)有蓋的長方體盒子,

設(shè)剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計(jì))

(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)

(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點(diǎn)A,B,拋物線頂點(diǎn)為C,△ABC為等邊三角形,求SABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去.若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的解答過程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4-(y+2)2+4,∵(y+2)2≥0,∴(y+2)2+4≥4,y2+4y+8的最小值為4.仿照上面的解答過程,求x2-x+4的最小值和6-2x-x2的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,A、B兩個(gè)頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(1,0).以點(diǎn)C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長放大到原來的2,設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)B的坐標(biāo)為(6,4).

(1)請用直尺(不帶刻度)和圓規(guī)作一條直線AC,它與x軸和y軸的正半軸分別交于點(diǎn)A和點(diǎn)C,且使∠ABC=90°,ABCAOC的面積相等.(作圖不必寫作法,但要保留作圖痕跡.)

(2)問:(1)中這樣的直線AC是否唯一?若唯一,請說明理由;若不唯一,請?jiān)趫D中畫出所有這樣的直線AC,并寫出與之對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘輪船在A處測得燈塔P位于其東北方向上,輪船沿正東方向航行30海里到達(dá)B處后,此時(shí)測得燈塔P位于其北偏東30°方向上,此時(shí)輪船與燈塔P的距離是( 。┖@铮

A. 15+15 B. 30+30 C. 45+15 D. 60

查看答案和解析>>

同步練習(xí)冊答案