如圖7,在已建立直角坐標(biāo)系的4×4正方形方格紙中,△ABC是格點三角形(三角形的三個頂點都是小正方形的頂點),若以格點PA、B為頂點的三角形與△ABC相似(全等除外),則格點P的坐標(biāo)是(     ).

  A P(1,4)       B.P(2,4)       C.P1(1,4)或P2(3,4)        D.不確定

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、今后你將大量遇到用坐標(biāo)的方法研究圖形的運動變換.
如圖1,在已建立直角坐標(biāo)系的方格紙中,圖形P的頂點為A,B,C,要將它平移旋轉(zhuǎn)到III圖(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
例如:將圖形P做如下變換(見圖2).
第一步:平移,使頂點C(6,6)移至點(4,3),得I圖;
第二步:繞著點(4,3)旋轉(zhuǎn)180°,得II圖;
第三步:平移,使點(4,3)移至點O(0,0),得III圖.
(1)寫出A,B兩點的坐標(biāo);
(2)從A,B,C三點中選取你要的點,仿照例題格式描述出另一種與上例不同的路線的圖形變換.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

今后你將大量遇到用坐標(biāo)的方法研究圖形的運動變換.
如圖1,在已建立直角坐標(biāo)系的方格紙中,圖形P的頂點為A,B,C,要將它平移旋轉(zhuǎn)到III圖(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
例如:將圖形P做如下變換(見圖2).
第一步:平移,使頂點C(6,6)移至點(4,3),得I圖;
第二步:繞著點(4,3)旋轉(zhuǎn)180°,得II圖;
第三步:平移,使點(4,3)移至點O(0,0),得III圖.
(1)寫出A,B兩點的坐標(biāo);
(2)從A,B,C三點中選取你要的點,仿照例題格式描述出另一種與上例不同的路線的圖形變換.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《旋轉(zhuǎn)》中考題集(14):23.2 中心對稱(解析版) 題型:解答題

今后你將大量遇到用坐標(biāo)的方法研究圖形的運動變換.
如圖1,在已建立直角坐標(biāo)系的方格紙中,圖形P的頂點為A,B,C,要將它平移旋轉(zhuǎn)到III圖(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
例如:將圖形P做如下變換(見圖2).
第一步:平移,使頂點C(6,6)移至點(4,3),得I圖;
第二步:繞著點(4,3)旋轉(zhuǎn)180°,得II圖;
第三步:平移,使點(4,3)移至點O(0,0),得III圖.
(1)寫出A,B兩點的坐標(biāo);
(2)從A,B,C三點中選取你要的點,仿照例題格式描述出另一種與上例不同的路線的圖形變換.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:解答題

(2005•三明)今后你將大量遇到用坐標(biāo)的方法研究圖形的運動變換.
如圖1,在已建立直角坐標(biāo)系的方格紙中,圖形P的頂點為A,B,C,要將它平移旋轉(zhuǎn)到III圖(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
例如:將圖形P做如下變換(見圖2).
第一步:平移,使頂點C(6,6)移至點(4,3),得I圖;
第二步:繞著點(4,3)旋轉(zhuǎn)180°,得II圖;
第三步:平移,使點(4,3)移至點O(0,0),得III圖.
(1)寫出A,B兩點的坐標(biāo);
(2)從A,B,C三點中選取你要的點,仿照例題格式描述出另一種與上例不同的路線的圖形變換.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年福建省三明市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•三明)今后你將大量遇到用坐標(biāo)的方法研究圖形的運動變換.
如圖1,在已建立直角坐標(biāo)系的方格紙中,圖形P的頂點為A,B,C,要將它平移旋轉(zhuǎn)到III圖(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
例如:將圖形P做如下變換(見圖2).
第一步:平移,使頂點C(6,6)移至點(4,3),得I圖;
第二步:繞著點(4,3)旋轉(zhuǎn)180°,得II圖;
第三步:平移,使點(4,3)移至點O(0,0),得III圖.
(1)寫出A,B兩點的坐標(biāo);
(2)從A,B,C三點中選取你要的點,仿照例題格式描述出另一種與上例不同的路線的圖形變換.

查看答案和解析>>

同步練習(xí)冊答案