(2012•長(zhǎng)春一模)如圖,在△AOB中,∠AOB=90°,OA=OB=6,C為OB上一點(diǎn),射線CD⊥OB交AB于點(diǎn)D,OC=2.點(diǎn)P從點(diǎn)A出發(fā)以每秒
2
個(gè)單位長(zhǎng)度的速度沿AB方向運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿CD方向運(yùn)動(dòng),P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)到點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.過點(diǎn)P作PE⊥OA于點(diǎn)E,PF⊥OB于點(diǎn)F,得到矩形PEOF.以點(diǎn)Q為直角頂點(diǎn)向下作等腰直角三角形QMN,斜邊MN∥OB,且MN=QC.設(shè)運(yùn)動(dòng)時(shí)間為t(單位:秒).
(1)求t=1時(shí)FC的長(zhǎng)度.
(2)求MN=PF時(shí)t的值.
(3)當(dāng)△QMN和矩形PEOF有重疊部分時(shí),求重疊(陰影)部分圖形面積S與t的函數(shù)關(guān)系式.
(4)直接寫出△QMN的邊與矩形PEOF的邊有三個(gè)公共點(diǎn)時(shí)t的值.
分析:(1)根據(jù)等腰直角三角形,可得AP=
2
t
,OF=EP=t,再將t=1代入求出FC的長(zhǎng)度;
(2)根據(jù)MN=PF,可得關(guān)于t的方程6-t=2t,解方程即可求解;
(3)分三種情況:求出當(dāng)1≤t≤2時(shí);當(dāng)2<t≤
8
3
時(shí);當(dāng)
8
3
<t≤3時(shí);求出重疊(陰影)部分圖形面積S與t的函數(shù)關(guān)系式;
(4)分M在OE上;N在PF上兩種情況討論求得△QMN的邊與矩形PEOF的邊有三個(gè)公共點(diǎn)時(shí)t的值.
解答:解:(1)根據(jù)題意,△AOB、△AEP都是等腰直角三角形.
AP=
2
t
,OF=EP=t,
∴當(dāng)t=1時(shí),F(xiàn)C=1;

(2)∵AP=
2
t,AE=t,PF=OE=6-t
MN=QC=2t
∴6-t=2t
解得t=2.
故當(dāng)t=2時(shí),MN=PF;

(3)當(dāng)1≤t≤2時(shí),S=2t2-4t+2;
當(dāng)2<t≤
8
3
時(shí),S=-
13
2
t2+30t-32;
當(dāng)
8
3
<t≤3時(shí),S=-2t2+6t;

(4)建立如圖所示的平面直角坐標(biāo)系.
設(shè)經(jīng)過t秒△QMN的邊與矩形PEOF的邊有三個(gè)公共點(diǎn),即點(diǎn)M在OA上,
當(dāng)點(diǎn)P在AD的左側(cè)時(shí),設(shè)經(jīng)過t秒△QMN的邊與矩形PEOF的邊有三個(gè)公共點(diǎn),
∵AP=
2
t,∠A=45°,PE⊥AB,
∴PE=t,CQ=2t,
∵M(jìn)N=CQ,△MNQ是等腰直角三角形,C(2,0)
∴t=2時(shí),△QMN的邊與矩形PEOF的邊有三個(gè)公共點(diǎn);
當(dāng)點(diǎn)P在AD的右側(cè)時(shí),設(shè)經(jīng)過t秒△QMN的邊與矩形PEOF的邊有三個(gè)公共點(diǎn),
此時(shí),PE=t,6-t=2t-2,解得t=
8
3

∴△QMN的邊與矩形PEOF的邊有三個(gè)公共點(diǎn)時(shí)t=2或
8
3
點(diǎn)評(píng):考查了相似形綜合題,涉及的知識(shí)有等腰直角三角形的性質(zhì),圖形的面積計(jì)算,函數(shù)思想,方程思想,分類思想的運(yùn)用,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)吉林省2007~2011年全省糧食產(chǎn)量統(tǒng)計(jì)結(jié)果如圖所示(單位:萬噸).這組糧食產(chǎn)量數(shù)據(jù)的中位數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)將矩形紙片ABCD按如圖方式折疊,DE、CF為折痕,折疊后點(diǎn)A和點(diǎn)B都落在點(diǎn)O處.若△EOF是等邊三角形,則
AB
AD
的值為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)長(zhǎng)春到吉林乘坐火車有普通火車和動(dòng)車兩種方式,普通火車需行駛140公里,動(dòng)車需行駛120公里,已知?jiǎng)榆嚨钠骄俣仁瞧胀ɑ疖嚻骄俣鹊?.5倍,動(dòng)車的全程運(yùn)行時(shí)間比普通火車縮短了1小時(shí)9分鐘,求普通火車和動(dòng)車的平均速度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)如圖,拋物線y=ax2-x-
54
與x軸正半軸交于點(diǎn)A(5,0).以O(shè)A為邊在x軸上方作正方形OABC,延長(zhǎng)CB交拋物線于點(diǎn)D,再以BD為邊向上作正三角形BDE.
(1)求a的值.
(2)求△BDE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長(zhǎng)春一模)如圖,梯形OABC中,OA在x軸上,CB∥OA,∠OAB=90°,O為坐標(biāo)原點(diǎn),B(4,4),BC=2,動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度沿線段OA運(yùn)動(dòng),到點(diǎn)A停止,過點(diǎn)Q作QP⊥x軸交折線O-C-B于點(diǎn)P,以PQ為一邊向右作正方形PQRS,設(shè)運(yùn)動(dòng)時(shí)間為t(秒),正方形PQRS與梯形OABC重疊面積為S(平方單位)
(1)求tan∠AOC;
(2)求S與t的函數(shù)關(guān)系式;
(3)求(2)中的S的最大值;
(4)連接AC,AC的中點(diǎn)為M,請(qǐng)直接寫出在正方形PQRS變化過程中,t為何值時(shí),△PMS為等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案