【題目】如圖,過矩形ABCD的四個(gè)頂點(diǎn)作對(duì)角線AC、BD的平行線,分別相交于E、F、G、H四點(diǎn),則四邊形EFGH為( 。

A.平行四邊形
B.矩形
C.菱形
D.正方形

【答案】C
【解析】解:由題意知,HG∥EF∥AC,EH∥FG∥BD,HG=EF=AC,EH=FG=BD,
∴四邊形EFGH是平行四邊形,
∵矩形的對(duì)角線相等,
∴AC=BD,
∴EH=HG,
∴平行四邊形EFGH是菱形.
故選C.
【考點(diǎn)精析】利用菱形的判定方法和矩形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程x2-ax+6=0, 配方后為(x-3)2=3, a=______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長(zhǎng)方形紙片與一張直角三角形紙片(∠EFG=90°)按如圖所示的位置擺放,
使直角三角形紙片的一個(gè)頂點(diǎn)E恰好落在長(zhǎng)方形紙片的一邊AB上,已知∠BEF=21°,則
∠CMF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ ACB=90°BC=2,將ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到DCEAD,BE分別是對(duì)應(yīng)頂點(diǎn)),若AEBC,則ADE的周長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】放學(xué)時(shí),王老師布置了一道因式分解題:(xy)2+4(xy)2-4(x2y2),小明思考了半天,沒有得出答案.請(qǐng)你幫小明解決這個(gè)問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP,CP的延長(zhǎng)線分別交AD于點(diǎn)E,F(xiàn),連結(jié)BD,DP,BD與CF相交于點(diǎn)H.給出下列結(jié)論: ①△ABE≌△DCF;②△DPH是等腰三角形;③PF= AB;④ =
其中正確結(jié)論的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)F為CD上一點(diǎn),BF與AC交于點(diǎn)E,∠CBF=20°.
(1)∠ACB的大小=(度);
(2)求證:△ABE≌△ADE;
(3)∠AED的大小=(度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車開往距離出發(fā)地180千米的目的地,出發(fā)后第一小時(shí)內(nèi)按原計(jì)劃的速度勻速行駛,一小時(shí)后以原來速度的1.5倍勻速行駛,并比原計(jì)劃提前40分到達(dá)目的地.求前一小時(shí)的行駛速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案