【題目】如圖,點P是等邊三角形ABC外接圓⊙O上的點,在以下判斷中,不正確的是
A、當弦PB最長時,ΔAPC是等腰三角形 B、當ΔAPC是等腰三角形時,PO⊥AC
C、當PO⊥AC時,∠ACP=300 D、當∠ACP=300時,ΔPBC是直角三角形
【答案】C。
【解析】根據(jù)圓和等邊三角形的性質(zhì)逐一作出判斷:
當弦PB最長時,PB是⊙O的直徑,所以根據(jù)等邊三角形的性質(zhì),BP垂直平分AC,從而根據(jù)線段垂直平分線上的點到線段兩端距離相等的性質(zhì)得PA=PC,即ΔAPC是等腰三角形,判斷A 正確;
當ΔAPC是等腰三角形時,根據(jù)垂徑定理,得PO⊥AC,判斷B正確;
當PO⊥AC時,若點P在劣弧AC上,則∠ACP=300,若點P在優(yōu)弧AC上,則點P與點B重合,∠ACP=600,則∠ACP=600,判斷C錯誤;
當∠ACP=300時,∠ABP=∠ACP=300,又∠ABC=600,從而∠PBC=300;又∠BPC=∠BAC=600,所以,∠BCP=900,即ΔPBC是直角三角形,判斷D正確。
故選C。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中∠BAC=90°,D,E分別是AB,BC的中點,F在CA的延長線上∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4,AD=m,動點P從點D出發(fā),在邊DA上以每秒1個單位的速度向點A運動,連接CP,作點D關(guān)于直線PC的對稱點E,設(shè)點P的運動時間為t(s).
(1)若m=6,求當P,E,B三點在同一直線上時對應(yīng)的t的值.
(2)已知m滿足:在動點P從點D到點A的整個運動過程中,有且只有一個時刻t,使點E到直線BC的距離等于3,求所有這樣的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標軸的兩個交點A、B.
(1)求拋物線的解析式; (2)畫出拋物線的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,△ABC繞點C順時針旋轉(zhuǎn)一定角度得到△DEC,點D恰好落在AB邊上,連接AE. 求:
(1)旋轉(zhuǎn)角的度數(shù);
(2)AE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店將進貨價每個10元的商品按售價18元售出時,每天可賣出60個.商店經(jīng)理到市場上做了一番調(diào)查后發(fā)現(xiàn),若將這種商品的售價每提高1元,則日銷售量就減少5個;若將這種商品的售價每降低1元,則日銷售量就增加10個。為獲得每日最大利潤,此商品售價應(yīng)定為每個多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,C,D,E在Rt△MON的邊上,∠MON=90°,AE⊥AB且AE=AB,BC⊥CD,BH⊥ON于點H,DF⊥ON于點F,OM=12,OE=6,BH=3,DF=4,F(xiàn)N=8,圖中陰影部分的面積為( 。
A. 30 B. 50 C. 66 D. 80
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,D是△ABC外的一點,∠AOB=130°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,連接OD.
(1)求證:△OCD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當α為多少度時,△AOD是等腰三角形.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某機械租賃公司有同一型號的機械設(shè)備40套,經(jīng)過一段時間的經(jīng)營發(fā)現(xiàn):當每套機械設(shè)備的月租金為270元時,恰好全部租出,在此基礎(chǔ)上,當每套設(shè)備的月租金提高10元時,這種設(shè)備就少租一套,且未租出一套設(shè)備每月需要支出費用(維護費、管理費等)20元.
(1)設(shè)每套設(shè)備的月租金為(元),用含的代數(shù)式表示未租出的設(shè)備數(shù)(套)以及所有未租出設(shè)備(套)的支出費用;
(2)租賃公司的月收益能否達到11040元?此時應(yīng)該出租多少套機械設(shè)備?每套月租金是多少元?請簡要說明理由;
(3)租賃公司的月收益能否在11040元基礎(chǔ)上再提高?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com