精英家教網(wǎng)已知:如圖,正方形BEFG的邊BG在正方形ABCD的邊BC上,連接AG、EC.
(1)觀察猜想圖中是否存在通過旋轉(zhuǎn)能夠互相重合的兩個三角形?若存在,請說出旋轉(zhuǎn)過程;若不存在,請說明理由.
(2)觀察猜想AG與CE之間的大小關系,并說明你的理由;
(3)請你延長AG交CE于點M,AM與CE是什么樣的位置關系?請說明理由.
分析:(1)根據(jù)旋轉(zhuǎn)性質(zhì)求出即可;
(2)根據(jù)正方形的性質(zhì)求出AB=BC,∠GBA=∠CBE=90°,BG=BE,根據(jù)SAS求出即可;
(3)根據(jù)全等推出∠GAB=∠BCE,求出∠GCM+∠CGM=90°即可.
解答:精英家教網(wǎng)解:(1)存在,△BCE繞B逆時針旋轉(zhuǎn)90°得到△BAG;

(2)AG=CE.
理由是:∵四邊形ABCD和四邊形BGFE都是正方形,
∴AB=BC,∠GBA=∠EBC=90°,BG=BE.
在△ABG與△CBE中,
AB=BC
∠GBA=∠EBC
BG=BE
,
∴△ABG≌△CBE,
∴AG=CE;

(3)AM⊥CE.
理由是:∵△ABG≌△CBE,
∴∠GAB=∠BCE,
∵∠CGM=∠AGB,
∵∠ABG=90°,
∴∠GAB+∠AGB=90°,
∴∠GCM+∠CGM=90°,
∴∠CMG=90°,
∴AM⊥CE.
點評:本題主要考查對正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定等知識點的理解和掌握,能求出△ABG≌△CBE是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點E,延長BC到點F,使CF=CE精英家教網(wǎng),連接DF,交BE的延長線于點G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關系?證明你的結論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖在正方形OADC中,點C的坐標為(0,4),點A的坐標為(4,0),CD的延長線交雙曲線y=
32
x
于點B.
(1)求直線AB的解析式;精英家教網(wǎng)
精英家教網(wǎng)
(2)G為x軸的負半軸上一點連接CG,過G作GE⊥CG交直線AB于E.求證CG=GE;
(3)在(2)的條件下,延長DA交CE的延長線于F,當G在x的負半軸上運動的過程中,請問
OG+GF
DF
的值是否為定值,若是,請求出其值;若不是,請說明你的理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知,如圖:正方形ABCD,將Rt△EFG斜邊EG的中點與點A重合,直角頂點F落在正方形的AB邊上,Rt△EFG的兩直角邊分別交AB、AD邊于P、Q兩點,(點P與點F重合),如圖所示:

(1)求證:EP2+GQ2=PQ2;
(2)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(0°<α≤90°),兩直角邊分別交AB、AD邊于P、Q兩點,如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關系?若存在,證明你的結論.若不存在,請說明理由;
(3)若將Rt△EFG繞著點A逆時針旋轉(zhuǎn)α(90°<α<180°),兩直角邊分別交AB、AD兩邊延長線于P、Q兩點,并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關系?按題意完善圖3,請直接寫出你的結論(不用證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,正方形ABCD的邊長為2a,H是以BC為直徑的半圓O上一點,過H與圓O相切的直線交AB精英家教網(wǎng)于E,交CD于F.
(1)當點H在半圓上移動時,切線EF在AB、CD上的兩個交點也分別在AB、CD上移動(E、A不重合,F(xiàn)、D不重合),試問:四邊形AEFD的周長是否也在變化?證明你的結論;
(2)設△BOE的面積為S1,△COF的面積為S2,正方形ABCD的面積為S,且S1+S2=
1348
S,求BE與CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,正方形紙片ABCD的邊長是4,點M、N分別在兩邊AB和CD上(其中點N不與點C重合),沿直線MN折疊該紙片,點B恰好落在AD邊上點E處.
(1)設AE=x,四邊形AMND的面積為 S,求 S關于x 的函數(shù)解析式,并指明該函數(shù)的定義域;
(2)當AM為何值時,四邊形AMND的面積最大?最大值是多少?
(3)點M能是AB邊上任意一點嗎?請求出AM的取值范圍.

查看答案和解析>>

同步練習冊答案