【題目】閱讀材料:用配方法求最值.
已知x,y為非負(fù)實數(shù),
∵x+y﹣
∴x+y≥2,當(dāng)且僅當(dāng)“x=y”時,等號成立.
示例:當(dāng)x>0時,求y= x++4的最小值.
解:+4=6,當(dāng)x=,即x=1時,y的最小值為6.
(1)嘗試:當(dāng)x>0時,求y= 的最小值.
(2)問題解決:隨著人們生活水平的快速提高,小轎車已成為越來越多家庭的交通工具,假設(shè)某種小轎車的購車費用為10萬元,每年應(yīng)繳保險費等各類費用共計0.4萬元,n年的保養(yǎng)、維護(hù)費用總和為萬元.問這種小轎車使用多少年報廢最合算(即:使用多少年的年平均費用最少,年平均費用= )?最少年平均費用為多少萬元?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形網(wǎng)格上有6個三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②~⑥中與①相似的是( )
A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+6與x軸、y軸分別相交于點E、F,點A的坐標(biāo)為(﹣6,0),P(x,y)是直線y=x+6上一個動點.
(1)在點P運動過程中,試寫出△OPA的面積s與x的函數(shù)關(guān)系式;
(2)當(dāng)P運動到什么位置,△OPA的面積為,求出此時點P的坐標(biāo);
(3)過P作EF的垂線分別交x軸、y軸于C、D.是否存在這樣的點P,使△COD≌△FOE?若存在,直接寫出此時點P的坐標(biāo)(不要求寫解答過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達(dá)式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標(biāo);
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到 達(dá)點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店欲購進(jìn) A、B 兩種商品,若購進(jìn) A 種商品 5 件和 B 種商品 4 件需 300 元;購進(jìn) A 種商品 6 件和 B 種商 品 8 件需 440 元.
(1)求 A、B 兩種商品每件的進(jìn)價分別為多少元?
(2)若該商店每銷售 1 件 A 種商品可獲利 8 元,每銷售 1 件 B 種商品可獲利 6 元,該商店準(zhǔn)備購進(jìn) A、B 兩種商 品共 50 件,且這兩種商品全部售出后總獲利超過 344 元,則至少購進(jìn)多少件 A 商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的邊OA在x軸上,將平行四邊形沿對角線AC對折,AO的對應(yīng)線段為AD,且點D,C,O在同一條直線上,AD與BC交于點E.
(1)求證:△ABC≌△CDA.
(2)若直線AB的函數(shù)表達(dá)式為,求三角線ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動點P、Q分別以3cm/s,2cm/s的速度從點A,C同時出發(fā),點Q從點C向點D移動.
(1)設(shè)運動時間為秒,則AP= cm,DQ= cm;
(2)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P,Q分別從點A,C同時出發(fā),問經(jīng)過多長時間P,Q兩點之間的距離是10cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
麗麗這學(xué)期學(xué)習(xí)了軸對稱的知識,知道了像角、等腰三角形、正方形、圓等圖形都是軸對稱圖形.類比這一特性,麗麗發(fā)現(xiàn)像m+n,mnp,等代數(shù)式,如果任意交換兩個字母的位置,式子的值都不變.太神奇了!于是她把這樣的式子命名為神奇對稱式.
她還發(fā)現(xiàn)像,(m-1)(n-1)等神奇對稱式都可以用表示.例如:.于是麗麗把稱為基本神奇對稱式 .
請根據(jù)以上材料解決下列問題:
(1)代數(shù)式① , ② , ③, ④ xy + yz + zx中,屬于神奇對稱式的是__________(填序號);
(2)已知.
① q=__________(用含m,n的代數(shù)式表示);
② 若,則神奇對稱式=__________;
③ 若 ,求神奇對稱式的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=-x+4與x軸、y軸分別交于點A,點B、點D在y軸的負(fù)半軸上,若將△OAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處。
(1)求AB的長。
(2)求點C和點D的坐標(biāo)。
(3)y軸上是否存在一點P,S△PAB= S△OCD?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com