如圖,已知菱形ABCD的對(duì)角線AC、BD交于平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),若BD=5,A的坐標(biāo)為(-1,2),則點(diǎn)C的坐標(biāo)為    ,D的坐標(biāo)為   
【答案】分析:根據(jù)平行四邊形是中心對(duì)稱的特點(diǎn)可知,點(diǎn)A與點(diǎn)C關(guān)于原點(diǎn)對(duì)稱,所以C的坐標(biāo)為(1,-2),根據(jù)菱形的性質(zhì)可求出AD的長,繼而求出D點(diǎn)的橫坐標(biāo),又點(diǎn)A和點(diǎn)D的縱坐標(biāo)相等,從而得出答案.
解答:解:∵在平行四邊形ABCD中,A點(diǎn)與C點(diǎn)關(guān)于原點(diǎn)對(duì)稱
∴C點(diǎn)坐標(biāo)為(1,-2).
∵OA=,OD=,∴AD=,
∴D點(diǎn)坐標(biāo)為(,2)
故答案為:(1,-2),(,2).
點(diǎn)評(píng):主要考查了平行四邊形的性質(zhì)和坐標(biāo)與圖形的關(guān)系.要會(huì)根據(jù)平行四邊形的性質(zhì)得到點(diǎn)A與點(diǎn)C關(guān)于原點(diǎn)對(duì)稱的特點(diǎn),是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的邊長為1.5cm,B,C兩點(diǎn)在扇形AEF的
EF
上,求
BC
的長度及扇形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的周長為16cm,∠ABC=60°,對(duì)角線AC和BD相交于點(diǎn)O,求AC和BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖,已知菱形ADEF和等腰三角形ABC,AB=AC,∠BAC=54°,點(diǎn)B、C分別在DE、EF.(B、C分別不與E、F重合)
(1)如圖1,當(dāng)AE平分∠BAC時(shí),
①求證:BD=CF;
②當(dāng)AD=AB時(shí),求∠ABD的度數(shù);
(2)如圖2,當(dāng)AE不平分∠BAC時(shí),若△ADB是一個(gè)等腰三角形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD邊長為6
3
,∠ABC=120°,點(diǎn)P在線段BC延長線上,半徑為r1的圓O1與DC、CP、DP分別相切于點(diǎn)H、F、N,半徑為r2的圓O2與PD延長線、CB延長線和BD分別相切于點(diǎn)M、E、G.
(1)求菱形的面積;
(2)求證:EF=MN;
(3)求r1+r2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD為2cm.B、C兩點(diǎn)在以點(diǎn)A為圓心的
EF
上,求
BC
的長度及扇形ABC的面積.(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊(cè)答案