【題目】如圖,直線L上有三個正方形a,b,c,若a,c的面積分別為1和9,則b的面積為( )

A.8 B.9 C.10 D.11

【答案】C

【解析】

試題分析:運用正方形邊長相等,再根據同角的余角相等可得BAC=DCE,然后證明ACB≌△DCE,再結合全等三角形的性質和勾股定理來求解即可.

解:由于a、b、c都是正方形,所以AC=CD,ACD=90°;

∵∠ACB+DCE=ACB+BAC=90°,即BAC=DCE,

ABCCED中,

∴△ACB≌△DCE(AAS),

AB=CE,BC=DE;

在RtABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,

即Sb=Sa+Sc=1+9=10,

b的面積為10,

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在⊙O中,直徑AB的長為10cm,AC的長為6cm,∠ACB的平分線交⊙O于點D,BC,ADBD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(﹣6)﹣(+15+4﹣(﹣15

2)﹣2×3﹣(﹣4×2+3

3)(×(﹣24

4)﹣14(﹣32÷(﹣

5)﹣18÷(﹣32+5×(﹣23﹣(﹣15÷5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有50個房間供游客居住,當每個房間定價120元時,房間會全部住滿,當每個房間每天的定價每增加10元時,就會有一個房間空閑,如果游客居住房間,賓館需對每個房間每天支出20元的各種費用.設每個房間定價增加10x(x為整數(shù))

(1)直接寫出每天游客居住的房間數(shù)量yx的函數(shù)關系式;

(2)設賓館每天的利潤為w元,當每間房價定價為多少元時,賓館每天所獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圓上有五個點,這五個點將圓分成五等份(每一份稱為一段弧長),把這五個點按順時針方向依次編號為123,45,若從某一點開始,沿圓周順時針方向行走,點的編號是數(shù)字幾,就走幾段弧長,則稱這種走法為一次“移位”.如:小明在編號為3的點,那么他應走3段弧長,即從3451為第一次“移位”,這時他到達編號為1的點,然后從12為第二次“移位”.若小明從編號為4的點開始,第2020次“移位”后,他到達編號為______的點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,OAB上,以O為圓心,OB長為半徑的圓與BC交于點D,DEACE.

(1)求證:DE是⊙O的切線;

(2)AC與⊙O相切于F,AB=5,sinA,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年5月25日,中國國際大數(shù)據產業(yè)博覽會在貴陽會展中心開幕,博覽會設了編號為1~6號展廳共6個,小雨一家計劃利用兩天時間參觀其中兩個展廳:第一天從6個展廳中隨機選擇一個,第二天從余下的5個展廳中再隨機選擇一個,且每個展廳被選中的機會均等.

(1)第一天,1號展廳沒有被選中的概率是  ;

(2)利用列表或畫樹狀圖的方法求兩天中4號展廳被選中的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形ABCD的兩條對角線分別為68M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值=___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,∠ABE=,且AB=AE,則DE的長度為(

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

同步練習冊答案