【題目】如圖,在圓 O 中有折線 ABCO,BC=6,CO=4,∠B=∠C=60°,則弦 AB 的長為__________________.
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M。
(1)若∠ACD=114°,求∠MAB的度數;
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F,連接CF.
(1)求證:AF=BD.
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.
(1)求證:△AEF≌△BEC;
(2)判斷四邊形BCFD是何特殊四邊形,并說出理由;
(3)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,若BC=1,求AH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點C為線段AB上一點,分別以AC、BC為邊在線段AB的同側作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點F.
(1)如圖1,若∠ACD=60°,則∠AFB=______,如圖2,若∠ACD=90°,則∠AFB=______,如圖3,若∠ACD=α,則∠AFB=______(用含α的式子表示);
(2)設∠ACD=α,將圖3中的△ACD繞點C順時針旋轉任意角度(交點F至少在BD、AE中的一條線段上),如圖4,試探究∠AFB與α的數量關系,并予以說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校園文學社為了解本校學生對本社一種報紙四個版面的喜歡情況,隨機抽取部分學生做了一次問卷調查,要求學生選出自己喜歡的一個版面,將調查數據進行了整理、繪制成部分統(tǒng)計圖如下:
請根據圖中信息,解答下列問題:
(1)第一版=____%,“第四版”對應扇形的圓心角為________°;
(2)請你補全條形統(tǒng)計圖;
(3)若該校有1200名學生,請你估計全校學生中最喜歡“第三版”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD與四邊形CEFG是兩個邊長分別為a,b的正方形.
(1)用含a,b的代數式表示三角形BGF的面積;(2)當,時,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某人用如下方法測一鋼管的內徑:將一小段鋼管豎直放在平臺上.向內放入兩個半徑為5 cm的鋼球,測得上面一個鋼球的最高點到底面的距離DC=16 cm(鋼管的軸截面如圖所示),則鋼管的內徑AD的長為_______cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,∠A=60°,∠ACB=45°,以BC為弦作⊙O,交AC于點D,OD與BC交于點E,若AB與⊙O相切,則下列結論:
①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤
正確的有( )
A. ①② B. ①④⑤ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com