【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點,且此拋物線的頂點坐標(biāo)為

求此拋物線的解析式;

設(shè)點D為已知拋物線對稱軸上的任意一點,當(dāng)面積相等時,求點D的坐標(biāo);

P在線段AM上,當(dāng)PCy軸垂直時,過點Px軸的垂線,垂足為E,將沿直線CE翻折,使點P的對應(yīng)點P、E、C處在同一平面內(nèi),請求出點坐標(biāo),并判斷點是否在該拋物線上.

【答案】D的坐標(biāo)為不在該拋物線上

【解析】

由拋物線經(jīng)過的C點坐標(biāo)以及頂點M的坐標(biāo),利用待定系數(shù)法即可求出拋物線解析式;

設(shè)點D坐標(biāo)為,根據(jù)三角形的面積公式以及面積相等,即可得出關(guān)于含絕對值符號的一元一次方程,解方程即可得出結(jié)論;

作點P關(guān)于直線CE的對稱點,過點軸于H,設(shè)y軸于點根據(jù)對稱的性質(zhì)即可得出,從而得出,由點A、M的坐標(biāo)利用待定系數(shù)法可求出直線AM的解析式,進而得出點P的坐標(biāo),在中,由勾股定理可求出CN的值,再由相似三角形的性質(zhì)以及線段間的關(guān)系即可找出點的坐標(biāo),將其代入拋物線解析式中看等式是否成立,由此即可得出結(jié)論.

拋物線經(jīng)過點,頂點為

,解得:,

所求拋物線的解析式為

依照題意畫出圖形,如圖1所示

,解得:,

A,

,為等腰直角三角形,

設(shè)AC交對稱軸,

由點可知直線AC的解析式為,

,即,

設(shè)點D坐標(biāo)為,

.,

,且

,解得:

D的坐標(biāo)為;

如圖2,點為點P關(guān)于直線CE的對稱點,過點軸于H,設(shè)y軸于點N.

中,

設(shè),則,

、可知直線AM的解析式為

當(dāng)時,,即點,

,

中,由勾股定理,得:,

解得:,

,

可得:

,

,

的坐標(biāo)為,

將點代入拋物線解析式,

得:,

不在該拋物線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,△ABC的高BH,CM交于點P

1)求證:PBPC

2)若PB5,PH3,求AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點P從點A出發(fā),以的速度沿折線運動,最終回到點A,設(shè)點P的運動時間為,線段AP的長度為,則能夠反映yx之間函數(shù)關(guān)系的圖象大致是

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于點和點B,與y軸交于點

求該二次函數(shù)的表達式;

過點A的直線且交拋物線于另一點D,求直線AD的函數(shù)表達式;

的條件下,在x軸上是否存在一點P,使得以B、CP為頂點的三角形與相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動某中學(xué)就學(xué)生體育活動興趣愛好的問題,隨機調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

在這次調(diào)查中,喜歡籃球項目的同學(xué)有多少人?

在扇形統(tǒng)計圖中,乒乓球的百分比為多少?

如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有多少人喜歡籃球項目?

請將條形統(tǒng)計圖補充完整;

在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué)現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加;@球隊,請運用列表或樹狀圖求出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi),兩條直線L1,L2相交于點O,對于平面內(nèi)任意一點M,p,q分別是點M到直線L1,L2的距離,則稱(p,q)為點M距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)(2,1)的點共有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD和過點C的切線互相垂直,垂足為D,直線DCAB的延長線相交于PCE平分∠ACB,交直徑AB于點F,連結(jié)BE

1)求證:AC平分∠DAB;

2)探究線段PC,PF之間的大小關(guān)系,并加以證明;

3)若tanPCB=,BE=,求PF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條直線分割一個三角形,如果能分割出等腰三角形,那么就稱這條直線為該三角形的一條等腰分割線.在直角三角形ABC中,∠C90°,AC8,BC6

1)如圖(1),若 O AB 的中點,則直線 OC_____ABC 的等腰分割線(填不是

2)如圖(2)已知ABC 的一條等腰分割線 BP 交邊 AC 于點 P,且 PBPA,請求出 CP 的長度.

3)如圖(3),在ABC 中,點 Q 是邊 AB 上的一點,如果直線 CQ ABC 的等腰分割線,求線段BQ 的長度等于 ______.(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C90°,∠A60°.

1)尺規(guī)作圖:作ABC的角平分線AD(不寫作法,保留作圖痕跡);

2)畫DEAB,垂足為E;

3)若BC12cm,求DE的長.

查看答案和解析>>

同步練習(xí)冊答案