【題目】如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD為菱形,且0,3)、4,0).

1)求經(jīng)過(guò)點(diǎn)的反比例函數(shù)的解析式;

2)設(shè)是(1)中所求函數(shù)圖象上一點(diǎn),以頂點(diǎn)的三角形的面積與COD的面積相等.求點(diǎn)P的坐標(biāo).

【答案】(1);(2P, )或(-,-).

【解析】試題分析:綜合考查反比例函數(shù)及菱形的性質(zhì),注意:根據(jù)菱形的性質(zhì)得到點(diǎn)C的坐標(biāo);點(diǎn)P的橫坐標(biāo)的有兩種情況.

1)根據(jù)菱形的性質(zhì)可得菱形的邊長(zhǎng),進(jìn)而可得點(diǎn)C的坐標(biāo),代入反比例函數(shù)解析式可得所求的解析式; (2)設(shè)出點(diǎn)P的坐標(biāo),易得△COD的面積,利用點(diǎn)P的橫坐標(biāo)表示出△PAO的面積,那么可得點(diǎn)P的橫坐標(biāo),就求得了點(diǎn)P的坐標(biāo).

試題解析:(1)由題意知,OA=3,OB=4

RtAOB中,AB==5

四邊形ABCD為菱形,

∴AD=BC=AB=5,

∴C-4-5).

設(shè)經(jīng)過(guò)點(diǎn)C的反比例函數(shù)的解析式為y=k≠0),

=-5,解得k=20

故所求的反比例函數(shù)的解析式為y=

2)設(shè)Px,y),

∵AD=AB=5,OA=3,

OD=2SCOD=×2×4=4,

OA|x|=4

|x|=,

x=±,、

當(dāng)x=時(shí),y==,當(dāng)x=-時(shí),y==-,

P, )或(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸的正半軸上,反比例函數(shù)y= 在第一象限的圖象分別交矩形OABC的邊AB、BC邊點(diǎn)于E、F,已知BE=2AE,四邊形的OEBF的面積等于12.

(1)求k的值;

(2)若射線(xiàn)OE對(duì)應(yīng)的函數(shù)關(guān)系式是y=,求線(xiàn)段EF的長(zhǎng);

(3)在(2)的條件下,連結(jié)AC,試證明:EF∥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為獎(jiǎng)勵(lì)學(xué)習(xí)之星,準(zhǔn)備在某商店購(gòu)買(mǎi)A、B兩種文具作為獎(jiǎng)品,已知一件A種文具的價(jià)格比一件B種文具的價(jià)格便宜5元,且用600元買(mǎi)A種文具的件數(shù)是用400元買(mǎi)B種文具的件數(shù)的2倍.

1)求一件A種文具的價(jià)格;

2)根據(jù)需要,該校準(zhǔn)備在該商店購(gòu)買(mǎi)A、B兩種文具共150件.

①求購(gòu)買(mǎi)A、B兩種文具所需經(jīng)費(fèi)W與購(gòu)買(mǎi)A種文具的件數(shù)a之間的函數(shù)關(guān)系式;

②若購(gòu)買(mǎi)A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計(jì)劃經(jīng)費(fèi)不超過(guò)2750元,求有幾種購(gòu)買(mǎi)方案,并找出經(jīng)費(fèi)最少的方案,及最少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)C(2,1)分別作x軸、y軸的平行線(xiàn),交直線(xiàn)y=﹣x+4B、A兩點(diǎn),若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且頂點(diǎn)在矩形ADBC內(nèi)(包括邊上),則a的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)l與⊙O相離,OAl于點(diǎn)A,交⊙O于點(diǎn)P,點(diǎn)B是⊙O 上一點(diǎn),AB是⊙O的切線(xiàn),連接BP并延長(zhǎng),交直線(xiàn)l于點(diǎn)C

(1)求證ABAC

(2)若PC,OA=15,求⊙O的半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,交.

1)求證:;

2)如圖1,連結(jié),問(wèn)是否為的平分線(xiàn)?請(qǐng)說(shuō)明理由.

3)如圖2,的中點(diǎn),連結(jié),用等式表示的數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的直徑,,、分別與圓相交于、,那么下列等式中一定成立的是(

A. AEBF=AFCF B. AEAB=AOAD'

C. AEAB=AFAC D. AEAF=AOAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BE=CF,AB∥DE,添加下列哪個(gè)條件不能證明△ABC≌△DEF的是( )

A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)(即這些小正方形的頂點(diǎn))上,且它們的坐標(biāo)分別是A2,﹣3),B5,﹣1),C13),結(jié)合所給的平面直角坐標(biāo)系,解答下列問(wèn)題:

1)請(qǐng)?jiān)谌鐖D坐標(biāo)系中畫(huà)出ABC

2)畫(huà)出ABC關(guān)于y軸對(duì)稱(chēng)的A'B'C',并寫(xiě)出A'B'C'各頂點(diǎn)坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案