【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫出點(diǎn)A、B的坐標(biāo);
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,寫出A′B′C′的三個(gè)頂點(diǎn)坐標(biāo);
(3)求△ABC的面積.
【答案】(1)A(2,﹣1)、B(4,3);(2)A′(0,0)、B′(2,4)、C′(﹣1,3);(3)5.
【解析】
(1)A在第四象限,橫坐標(biāo)為正,縱坐標(biāo)為負(fù);B的第一象限,橫縱坐標(biāo)均為正;
(2)讓三個(gè)點(diǎn)的橫坐標(biāo)減2,縱坐標(biāo)加1即為平移后的坐標(biāo);
(3)△ABC的面積等于邊長(zhǎng)為3,4的長(zhǎng)方形的面積減去2個(gè)邊長(zhǎng)為1,3和一個(gè)邊長(zhǎng)為2,4的直角三角形的面積,把相關(guān)數(shù)值代入即可求解.
(1)寫出點(diǎn)A、B的坐標(biāo):A(2,﹣1)、B(4,3)
(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(0,0)、B′(2,4)、C′(﹣1,3).
(3)△ABC的面積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE、△ADC和△ABC分別是關(guān)于AB,AC邊所在直線的軸對(duì)稱圖形,若∠1:∠2:∠3=7:2:1,則∠α的度數(shù)為( ).
A.126°B.110°C.108°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師元旦節(jié)期間到武商眾圓商場(chǎng)購(gòu)買一臺(tái)某品牌筆記本電腦,恰逢商場(chǎng)正推出“迎元旦”促銷打折活動(dòng),具體優(yōu)惠情況如表:
購(gòu)物總金額(原價(jià)) | 折扣 |
不超過5000元的部分 | 九折 |
超過5000元且不超過10000元的部分 | 八折 |
超過10000元且不超過20000元的部分 | 七折 |
…… | …… |
例如:若購(gòu)買的商品原價(jià)為15000元,實(shí)際付款金額為:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若這種品牌電腦的原價(jià)為8000元/臺(tái),請(qǐng)求出張老師實(shí)際付款金額;
(2)已知張老師購(gòu)買一臺(tái)該品牌電腦實(shí)際付費(fèi)5700元.
①求該品牌電腦的原價(jià)是多少元/臺(tái)?
②若售出這臺(tái)電腦商場(chǎng)仍可獲利14%,求這種品牌電腦的進(jìn)價(jià)為多少元/臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理a2+b2=c2本身就是一個(gè)關(guān)于a,b,c的方程,滿足這個(gè)方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達(dá)哥拉斯學(xué)派提出了一個(gè)構(gòu)造勾股數(shù)組的公式,根據(jù)該公式可以構(gòu)造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個(gè)勾股數(shù)組為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A,B兩點(diǎn)相距25km,C,D為兩莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C,D兩村到E站的距離相等.問:
(1)在離A站多少km處?
(2)判定三角形DEC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中AB=AC.
(1)作圖:在AC上有一點(diǎn)D,延長(zhǎng)BD,并在BD的延長(zhǎng)線上取點(diǎn)E,使AE=AB,連AE,作∠EAC的平分線AF,AF交DE于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,連接CF,求證:∠BAC=∠BFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.
求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AB,連接B,C,求△AB,C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖①位置時(shí),求證:DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖②位置時(shí),試問:DE,AD,BE有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明.
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖③位置時(shí),DE,AD,BE之間的等量關(guān)系是 (直接寫出答案,不需證明.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)方形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從點(diǎn)A開始按A→B→C→D的方向運(yùn)動(dòng)到點(diǎn)D.如圖,設(shè)動(dòng)點(diǎn)P所經(jīng)過的路程為x,△APD的面積為y.(當(dāng)點(diǎn)P與點(diǎn)A或D重合時(shí),y=0)
(1)寫出y與x之間的函數(shù)解析式;
(2)畫出此函數(shù)的圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com