(2007•樂(lè)山)如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F.
(1)求證:AD=CE;
(2)求∠DFC的度數(shù).

【答案】分析:根據(jù)等邊三角形的性質(zhì),利用SAS證得△AEC≌△BDA,所以AD=CE,∠ACE=∠BAD,再根據(jù)三角形的外角與內(nèi)角的關(guān)系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.
解答:解:(1)∵△ABC是等邊三角形,
∴∠BAC=∠B=60°,AB=AC.
又∵AE=BD,
∴△AEC≌△BDA(SAS).
∴AD=CE;

(2)由(1)△AEC≌△BDA,得∠ACE=∠BAD,
∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.
點(diǎn)評(píng):本題利用了等邊三角形的性質(zhì)和三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•樂(lè)山)如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,0);直線x=1與拋物線交于點(diǎn)E,與x軸交于點(diǎn)F,且45°≤∠FAE≤60度.
(1)用b表示點(diǎn)E的坐標(biāo);
(2)求實(shí)數(shù)b的取值范圍;
(3)請(qǐng)問(wèn)△BCE的面積是否有最大值?若有,求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省南充高中高一新生入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•樂(lè)山)如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,0);直線x=1與拋物線交于點(diǎn)E,與x軸交于點(diǎn)F,且45°≤∠FAE≤60度.
(1)用b表示點(diǎn)E的坐標(biāo);
(2)求實(shí)數(shù)b的取值范圍;
(3)請(qǐng)問(wèn)△BCE的面積是否有最大值?若有,求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省樂(lè)山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•樂(lè)山)如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,0);直線x=1與拋物線交于點(diǎn)E,與x軸交于點(diǎn)F,且45°≤∠FAE≤60度.
(1)用b表示點(diǎn)E的坐標(biāo);
(2)求實(shí)數(shù)b的取值范圍;
(3)請(qǐng)問(wèn)△BCE的面積是否有最大值?若有,求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省龍巖市龍巖中學(xué)中考數(shù)學(xué)模擬(2)(解析版) 題型:填空題

(2007•樂(lè)山)如圖,半圓的直徑AB=10,P為AB上一點(diǎn),點(diǎn)C,D為半圓的三等分點(diǎn),則陰影部分的面積等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省樂(lè)山市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•樂(lè)山)如圖,半圓的直徑AB=10,P為AB上一點(diǎn),點(diǎn)C,D為半圓的三等分點(diǎn),則陰影部分的面積等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案