【題目】已知(a+b)2=11,(a—b)2=7,求a2+b2與ab的值.
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們生活水平的提高,家用轎車越來越多地進入家庭,小明家中買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如下表),以50 km為標準,多于50 km的記為“+”,不足50 km的記為“-”,剛好50 km的記為“0”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程(km) | -8 | -11 | -14 | 0 | -16 | +41 | +8 |
(1)請求出這七天中平均每天行駛多少千米?
(2)若每天行駛100 km需用汽油6升,汽油價6.2元/升,請估計小明家一個月(按30天計)的汽油費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016云南省第22題)草莓是云南多地盛產的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關系,如圖是y與x的函數(shù)關系圖象.
(1)求y與x的函數(shù)解析式(也稱關系式)
(2)設該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】仔細觀察下面的正四面體、正六面體、正八面體,解決下列問題:
⑴填空:
①正四面體的頂點數(shù)V= ,面數(shù)F= ,棱數(shù)E= .
②正六面體的頂點數(shù)V= ,面數(shù)F= ,棱數(shù)E= .
③正八面體的頂點數(shù)V= ,面數(shù)F= ,棱數(shù)E= .
⑵若將多面體的頂點數(shù)用V表示,面數(shù)用F表示,棱數(shù)用E表示,則V、F、E之間的數(shù)量關系可用一個公式來表示,這就是著名的歐拉公式,請寫出歐拉公式:
⑶如果一個多面體的棱數(shù)為30,頂點數(shù)為20,那么它有多少個面?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,點G是BC延長線上一點,連結AG,分別交BD、CD于點E、F,連結CE.
(1)求證:∠DAE=∠DCE;
(2)當CE=2EF時,EG與EF的等量關系是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖南省岳陽市第24題)如圖①,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).
(1)求拋物線F1所表示的二次函數(shù)的表達式;
(2)若點M是拋物線F1位于第二象限圖象上的一點,設四邊形MAOC和△BOC的面積分別為S四邊形MAOC和S△BOC,記S=S四邊形MAOC﹣S△BOC,求S最大時點M的坐標及S的最大值;
(3)如圖②,將拋物線F1沿y軸翻折并“復制”得到拋物線F2,點A、B與(2)中所求的點M的對應點分別為A′、B′、M′,過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D、P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能判斷△ABC為直角三角形的是。ā 。
A. , , B.
C. ∠A+∠B=∠C D. ∠A:∠B:∠C=3:4:5
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com