【題目】已知ΔABC的三邊長(zhǎng)為a、b、c,下列條件能夠說(shuō)明ΔABC是直角三角形的是( )
A. a:b:c=5:12:15 B. 3a=4b=5c C. a:b:c=1:2: D. a=b=c
【答案】C
【解析】
利用勾股定理的逆定理對(duì)各項(xiàng)依次判定即可解答.
選項(xiàng)A, 設(shè)a:b:c=5:12:15=k,則a=5k,b=12k,c=15k,∵ , , ,∴ΔABC不是直角三角形;
選項(xiàng)B,由3a=4b=5c可得a:b:c=20:15:12,由選項(xiàng)A的方法可得,ΔABC不是直角三角形;
選項(xiàng)C,a:b:c=1:2:,由選項(xiàng)A的方法可得,ΔABC是直角三角形且∠B為直角;
選項(xiàng)D,由a=b=c可得a:b:c=::1,由選項(xiàng)A的方法可得,ΔABC不是直角三角形.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a、b表示,且(a﹣20)2+|b+10|=0,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).
(1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離;
(2)已知線段OB上有點(diǎn)C且|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù);
(3)動(dòng)點(diǎn)P從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度,第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,…….點(diǎn)P能移動(dòng)到與A或B重合的位置嗎?若不能,請(qǐng)直接回答;若能,請(qǐng)直接指出,第幾次移動(dòng),與哪一點(diǎn)重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,甲、乙兩船同時(shí)由港口A出發(fā)開(kāi)往海島B,甲船沿東北方向向海島B航行,其速度為15海里/小時(shí);乙船速度為20海里/小時(shí),先沿正東方向航行1小時(shí)后,到達(dá)C港口接旅客,停留半小時(shí)后再轉(zhuǎn)向北偏東30°方向開(kāi)往B島,其速度仍為20海里/小時(shí).
(1)求港口A到海島B的距離;
(2)B島建有一座燈塔,在離燈塔方圓5海里內(nèi)都可以看見(jiàn)燈塔,問(wèn)甲、乙兩船哪一艘先看到燈塔?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】深圳市地鐵9號(hào)線梅林段的一項(xiàng)綠化工程由甲、乙兩工程隊(duì)承擔(dān),已知乙工程隊(duì)單獨(dú)完成這項(xiàng)工程所需的天數(shù)是甲工程隊(duì)單獨(dú)完成所需天數(shù)的 ,甲工程隊(duì)單獨(dú)工作30天后,乙工程隊(duì)參與合做,兩隊(duì)又共同工作了36天完成.
(1)求乙工程隊(duì)單獨(dú)完成這項(xiàng)工作需要多少天?
(2)因工期的需要,將此項(xiàng)工程分成兩部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均為正整數(shù),且x<46,y<52,求甲、乙兩隊(duì)各做了多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為 的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(﹣1,0),點(diǎn)B在拋物線y=ax2+ax﹣2上.
(1)點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)拋物線的解析式為;
(3)設(shè)(2)中拋物線的頂點(diǎn)為D,求△DBC的面積;
(4)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知△ABC為直角三角形,分別以直角邊AC、BC為直徑作半圓AmC和BnC,以AB為直徑作半圓ACB,記兩個(gè)月牙形陰影部分的面積之和為S1,△ABC的面積為S2,則S1與S2的大小關(guān)系為( )
A. S1>S2 B. S1<S2 C. S1=S2 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC.
(1)發(fā)現(xiàn):如圖1,當(dāng)點(diǎn)E在AB上且點(diǎn)C和點(diǎn)D重合時(shí),若點(diǎn)M、N分別是DB、EC的中點(diǎn),則MN與EC的位置關(guān)系是 ,MN與EC的數(shù)量關(guān)系是 .
(2)探究:若把(1)小題中的△AED繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到的圖2,連接BD和EC,并連接DB、EC的中點(diǎn)M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請(qǐng)給予證明,若不成立,請(qǐng)說(shuō)明理由.
(3)若把(1)小題中的△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到的圖3,連接BD和EC,并連接DB、EC的中點(diǎn)M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請(qǐng)給予證明,若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù) a、b、c 在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置,如圖所示:① abc<0;② |a-b|+|b-c|=|a-c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四個(gè)結(jié)論正確的有( )個(gè)
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P(a,a)是反比例函數(shù)y= 在第一象限內(nèi)的圖象上的一個(gè)點(diǎn),以點(diǎn)P為頂點(diǎn)作等邊△PAB,使A、B落在x軸上,則△POA的面積是( 。
A.3
B.4
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com