【題目】如圖,一次函數(shù) y=-x+6的圖像與正比例函數(shù) y2x 的圖像交于點 A

1)求點 A 的坐標;

2)已知點 B 在直線 y=-x+6上,且橫坐標為5,在 x 軸上確定點 P,使 PAPB 的值最小,求出此時 P 點坐標,并直接寫出 PA+PB 的最小值.

【答案】1)點A的坐標(24);(2P 點坐標為(0),PAPB 的最小值為

【解析】

(1)把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,即可求得交點A的坐標;

(2)作點B關(guān)于軸的對稱點C,連接AC軸于P,連接PB,此時PA+PB的值最小,利用兩點之間的距離公式計算即可求得最小值.

(1)解方程組,

得:

∴點A的坐標為(2,4);

(2) ∵點B在直線上,且橫坐標為5,

∴點B的坐標為(5,1),

B點關(guān)于x軸對稱點C

則點C的坐標為(5,-1),

連接AC軸于P,連接PB,此時PA+PB的值最小,

設(shè)直線AC的表達式為
將點A、C的坐標(24)、(5,-1)代入,得:,

解得:,

∴直線AC的表達式為,

,則,

P點坐標為(,0),

PA+PB的最小值=AC=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校在七年級設(shè)立了六個課外興趣小組,每個參加者只能參加一個興趣小組,下面是六個興趣小組不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖.根據(jù)圖中信息,解決下列問題:

1)七年級共有 人參加了興趣小組;

2)體育興趣小組對應(yīng)扇形圓心角的度數(shù)為 ;

3)以各小組人數(shù)組成一組新數(shù)據(jù),求這組新數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校數(shù)學興趣小組開展了一次課外活動,過程如下:如圖①,正方形ABCD中,AB=4,將三角板放在正方形ABCD上,使三角板的直角頂點與D點重合.三角板的一邊交AB于點P,另一邊交BC的延長線于點Q

(1)求證:AP=CQ;

(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DEBC于點E,連接PE,他發(fā)現(xiàn)PEQE存在一定的數(shù)量關(guān)系,請猜測他的結(jié)論并予以證明;

(3)在(2)的條件下,若AP=1,求PE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC6cm,射線AGBC,點E從點A出發(fā)沿射線AG1cm/s的速度運動,點F從點B出發(fā)沿射線BC2cm/s的速度運動.如果點E、F同時出發(fā),設(shè)運動時間為t(s)t______s時,以A、C、E、F為頂點四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓練(各射擊10),成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下表:

平均成績(環(huán))

中位數(shù)(環(huán))

眾數(shù)(環(huán))

方差

a

7

7

1.2

7

b

c

d

1)填空:a b ,c ,求出 d 的值;

2)若選派其中一名參賽,你認為應(yīng)選哪名隊員?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)為了提高工人勞動的積極性,決定對工人的月工資進行調(diào)整已知該企業(yè)有 n 名工人,調(diào)整后的月工資 y()與調(diào)整前的月工資 x()滿足一次函數(shù)關(guān)系,如下表:

1)求 y x 的函數(shù)關(guān)系式;

2)若某名工人調(diào)整前月工資是4800元,那么調(diào)整后這名工人月工資增加了多少元?

3)這 名工人調(diào)整前、后的平均月工資分別為,,猜想的關(guān)系式,并寫出推導過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:

(1)請將下表補充完整:(參考公式:方差S2= [(x12+(x22+…+(xn2])

平均數(shù)

方差

中位數(shù)

7

   

7

   

5.4

   

(2)請從下列三個不同的角度對這次測試結(jié)果進行

①從平均數(shù)和方差相結(jié)合看,   的成績好些;

②從平均數(shù)和中位數(shù)相結(jié)合看,   的成績好些;

③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知兩條線段ACBC,連接AB,分別以AB、BC為底邊向上畫等腰△ABD和等腰△BCE,ADB=∠BEC=α

1)如圖1,當α=60°時,求證:△DBEABC;

2)如圖2,當α=90°時,且BC=5,AC=2.

①求DE的長;

②如圖3,將線段CA繞點C旋轉(zhuǎn),點D也隨之運動,請求出C,D兩點之間距離的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出 4臺.商場要想在這種冰箱銷售中每天盈利 4800 元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?

查看答案和解析>>

同步練習冊答案