【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某種蘋果到了收獲季節(jié),投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蘋果的銷售不會(huì)虧本,且該產(chǎn)品的日銷售量y(千克)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系關(guān)于銷售單價(jià)、日銷售量、日銷售利潤(rùn)的幾組對(duì)應(yīng)值如表:

銷售單價(jià)x(元)

10

15

23

28

日銷售量y(千克)

200

150

70

m

日銷售利潤(rùn)w(元)

400

1050

1050

400

(注:日銷售利潤(rùn)=日銷售量×(銷售單價(jià)﹣成本單價(jià)))

1)求y關(guān)于x的函數(shù)解析式(要寫出x的取值范圍)及m的值;

2)根據(jù)以上信息,填空:產(chǎn)品的成本單價(jià)是   元,當(dāng)銷售單價(jià)x   元時(shí),日銷售利潤(rùn)w最大,最大值是   元;

3)某農(nóng)戶今年共采摘蘋果4800千克,該品種蘋果的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蘋果?請(qǐng)說明理由

【答案】1y=﹣10x+3008x30);(28,19,1210;(3)不能銷售完這批蘋果,見解析.

【解析】

1)利用待定系數(shù)法求解可得;

2)根據(jù)總利潤(rùn)=單件利潤(rùn)×銷售量列出函數(shù)解析式,并配方成頂點(diǎn)式即可得出最大值;

3)求出在(2)中情況下,即x19時(shí)的銷售量,據(jù)此求得40天的總銷售量,比較即可得出答案.

解:(1)設(shè)yx的函數(shù)關(guān)系式為ykx+b

將(10,200)、(15150)代入,得:,

解得:,

yx的函數(shù)關(guān)系式為y=﹣10x+3008≤x≤30);

2)設(shè)每天銷售獲得的利潤(rùn)為w,

w=(x8y

=(x8)(﹣10x+300

=﹣10x192+1210,

8≤x≤30,

∴當(dāng)x19時(shí),w取得最大值,最大值為1210;

故答案為:819,1210;

3)由(2)知,當(dāng)獲得最大利潤(rùn)時(shí),定價(jià)為19/千克,

則每天的銷售量為y=﹣10×19+300110千克,

∵保質(zhì)期為40天,

∴總銷售量為40×1104400,

又∵44004800,

∴不能銷售完這批蘋果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王同學(xué)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)請(qǐng)根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請(qǐng)你估計(jì)總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個(gè)范圍內(nèi)的樣本家庭中任意抽取2個(gè),請(qǐng)用列舉法(畫樹狀圖或列表)求抽取出的2個(gè)家庭來自不同范圍的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為6的⊙O中,正方形AGDH與正六邊形ABCDEF都內(nèi)接于⊙O,則圖中陰影部分的面積為( 。

A. 279B. 5418C. 18D. 54

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4分別交x軸、y軸于AC兩點(diǎn),拋物線y=﹣x2+mx+4經(jīng)過點(diǎn)A,且與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.連接BC,過點(diǎn)CCDx軸交拋物線于點(diǎn)D

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)E是拋物線上的點(diǎn),求滿足∠ECD=∠BCO的點(diǎn)E的坐標(biāo);

3)點(diǎn)My軸上且位于點(diǎn)C上方,點(diǎn)N在直線AC上,點(diǎn)P為第一象限內(nèi)的拋物線上一點(diǎn),若以點(diǎn)C、MN、P為頂點(diǎn)的四邊形是菱形,求菱形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,某商場(chǎng)進(jìn)行促銷活動(dòng),出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物.

1)顧客購(gòu)買多少元金額的商品時(shí),買卡與不買卡花錢相等?在什么情況下購(gòu)物合算?

2)小張要買一臺(tái)標(biāo)價(jià)為3500元的冰箱,如何購(gòu)買合算?小張能節(jié)省多少元錢?

3)小張按合算的方案,把這臺(tái)冰箱買下,如果紅旗商場(chǎng)還能盈利25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cyax2-2axc經(jīng)過點(diǎn)C(1,2),與x軸交于A(-1,0)、B兩點(diǎn)

(1) 求拋物線C的解析式

(2) 如圖1,直線交拋物線CS、T兩點(diǎn),M為拋物線CAT之間的動(dòng)點(diǎn),過M點(diǎn)作MEx軸于點(diǎn)E,MFST于點(diǎn)F,求MEMF的最大值

(3) 如圖2,平移拋物線C的頂點(diǎn)到原點(diǎn)得拋物線C1,直線lykx-2k-4交拋物線C1P、Q兩點(diǎn),在拋物線C1上存在一個(gè)定點(diǎn)D,使∠PDQ=90°,求點(diǎn)D的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校的一個(gè)社會(huì)實(shí)踐小組對(duì)本校學(xué)生中開展主題為“垃圾分類知多少”的專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個(gè)等級(jí),劃分等級(jí)后的數(shù)據(jù)整理如下表:

等級(jí)

非常了解

比較了解

基本了解

不太了解

頻數(shù)

20

35

41

4

1)請(qǐng)根據(jù)調(diào)查結(jié)果,若該校有學(xué)生人,請(qǐng)估計(jì)這些學(xué)生中“比較了解”垃圾分類知識(shí)的人數(shù).

2)在“比較了解”的調(diào)查結(jié)果里,其中九(1)班學(xué)生共有人,其中名男生和名女生,在這人中,打算隨機(jī)選出位進(jìn)行采訪,求出所選兩位同學(xué)恰好是1名男生和1名女生的概率.(要求列表或畫樹狀圖)

查看答案和解析>>

同步練習(xí)冊(cè)答案