【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點C在y軸的負(fù)半軸上,AO:OC=3:4,點P在線段OC上,且PO、PC的長(PO<PC)是關(guān)于x的方程x2-12x+32=O的兩根.

(1) 求P點坐標(biāo)求

(2) 求AC、BC的長;

(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

【答案】1P0,-4) (2AC=15 BC=20 3y=4y=4

【解析】試題分析:(1)根據(jù)方程的解求出兩根,然后跟POPC求出點P的坐標(biāo);(2)根據(jù)雙垂直得出∠ACO=∠ABC,然后根據(jù)∠ABC的正切值求出ACBC的長度;(3)根據(jù)等腰梯形的性質(zhì)求出點Q的坐標(biāo),然后計算PQ的函數(shù)解析式.

試題解析:(1-12x+32=O.解得=4,=8 ∵ PO<PC

∴ PO=4∴ PO,-4

2∵ ∠ACB=90°,CO⊥AB, ∴ ∠ACO=∠ABC∴ tan∠ABC=,

Rt△ABC中,設(shè)AC=3a,BC=4a AB=5a,

∵AB=5a=25 ∴ a=5 ∴ AC="15" BC=20

3)存在,直線PQ解析式為:y=4y=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:x3x3x5÷x+(﹣2x22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】細(xì)心觀察圖,認(rèn)真分析各式,然后解答問題: ( 2+1=2,S1=
2+1=3,S2=
2+1=4,S3=

(1)用含n(n是正整數(shù))的等式表示上述變化規(guī)律;
(2)計算S12+S22+S32+S42+…+S102的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,P為對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F,連接CE.

(1)求證:△PCE是等腰直角三角形;
(2)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時,判斷△PCE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果|a+1|+(b1)20,則a2000+b2001_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某次歌手大賽中,10位評委對某歌手打分分別為:9.8,9.0,9.5,9.7,9.6,9.0,9.0,9.5,9.9,8.9,則去掉一個最高分一個最低分后,該歌手的得分應(yīng)是__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=30°,E為BC延長線上一點,∠ABC與∠ACE的平分線相交于點D,則∠D的度數(shù)為(
A.15°
B.17.5°
C.20°
D.22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店進(jìn)行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:

(1)甲、乙兩組單獨工作一天,商店應(yīng)各付多少元?

(2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應(yīng)付費用較少?

(3)若裝修完后,商店每天可盈利200元,你認(rèn)為如何安排施工有利用商店經(jīng)營?說說你的理由.(可以直接用(1)(2)中的已知條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框(形狀不限),不計螺絲大小,其中相鄰兩螺絲的距離依次為3、4、57,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任意兩個螺絲間的距離的最大值為( 。

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步練習(xí)冊答案