【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC.若AC=6,則四邊形ABCD的面積為 .
科目:初中數(shù)學 來源: 題型:
【題目】人民商場銷售某種冰箱,每臺進價為2500元,市場調研表明:當每臺銷售價定為2900元時,平均每天能售出8臺;每臺售價每降低50元,平均每天能多售出4臺.
設該種冰箱每臺的銷售價降低了x元.
(1)填表:
每天售出的冰箱臺數(shù)(臺) | 每臺冰箱的利潤(元) | |
降價前 | 8 | |
降價后 |
(2)若商場要想使這種冰箱的銷售利潤平均每天達到5000元,則每臺冰箱的售價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,BA⊥y軸于點A,BC⊥x軸于點C,函數(shù)y=﹣(x>0)的圖象分別交BA、BC于點D、E,當BD=3AD,且△BDE的面積為18時,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣2x+4分別交x軸、y軸于點A、B,將△AOB繞點O順時針旋轉90°后得到△A′OB′.
(1)求直線A′B′所對應的函數(shù)表達式.
(2)若直線A′B′與直線AB相交于點C,求△A′BC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,過點A作AE⊥CD,交CD的延長線于點E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)已知AE=8cm,CD=12cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①有一個角是的等腰三角形是等邊三角形;②如果三角形的一個外角平分線平行三角形的一邊,那么這個三角形是等腰三角形;③三角形三邊的垂直平分線的交點與三角形三個頂點的距離相等;④有兩個角相等的等腰三角形是等邊三角形.其中正確的個數(shù)有( )
A. 個B. 個C. 個D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,已知直線m平行于直線n,折線ABC是夾在m與n之間的一條折線,則、、的度數(shù)之間有什么關系?為什么?
(2)如圖,直線m依然平行于直線n,則此時、、、之間有什么關系?(只需寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是長方形, ∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=4,AD=BC=6,點A的坐標為(3,2).動點P的運動速度為每秒a個單位長度,動點Q的運動速度為每秒b個單位長度,且.設運動時間為t,動點P、Q相遇則停止運動.
(1) 求a,b的值;
(2) 動點P,Q同時從點A出發(fā),點P沿長方形ABCD的邊界逆時針方向運動,點Q沿長方形ABCD的邊界順時針方向運動,當t為何值時P、Q兩點相遇?求出相遇時P、Q所在位置的坐標;
(3) 動點P從點A出發(fā),同時動點Q從點D出發(fā):
①若點P、Q均沿長方形ABCD的邊界順時針方向運動,t為何值時,P、Q兩點相遇?求出相遇時P、Q所在位置的坐標;
②若點P、Q均沿長方形ABCD的邊界逆時針方向運動,t為何值時,P、Q兩點相遇?求出相遇時P、Q所在位置的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(知識生成)我們知道,用兩種不同的方法計算同一個幾何圖形的面積,可以得到一些代數(shù)恒等式.
例如:如圖可以得到(a+b)2=a2+2ab+b2,基于此,請解答下列問題:
⑴ 根據(jù)如圖,寫出一個代數(shù)恒等式:
;
⑵ 利用⑴中得到的結論,解決下面的問題:若a+b+c=12,,
則 ;
⑶ 小明同學用如圖中x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+3b)的長方形,則x+y+z= ;
(知識遷移)⑷ 類似地,用兩種不同的方法計算幾何體的體積同樣可以得到一些代數(shù)恒等式.如圖表示的是一個邊長為x的正方體挖去一個邊長為2的小長方體后重新拼成一個新長方體.請你根據(jù)如圖中兩個圖形的變化關系,寫出一個代數(shù)恒等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com