【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點.
(1)求BC的長;
(2)過點D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.
【答案】
(1)解:連接AD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
又∵∠ABC=30°,AB=4,
∴BD=2 ,
∵D是BC的中點,
∴BC=2BD=4
(2)證明:連接OD.
∵D是BC的中點,O是AB的中點,
∴DO是△ABC的中位線,
∴OD∥AC,則∠EDO=∠CED
又∵DE⊥AC,
∴∠CED=90°,∠EDO=∠CED=90°
∴DE是⊙O的切線.
【解析】(1)根據(jù)圓周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,進而求得BC即可;(2)要證明直線DE是⊙O的切線只要證明∠EDO=90°即可.
【考點精析】通過靈活運用含30度角的直角三角形和圓周角定理,掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點對應(yīng)的數(shù)為,點對應(yīng)的數(shù)為,點為數(shù)軸上一動點.
(1) AB的距離是 .
(2) ①若點到點的距離比到點的距離大1,點對應(yīng)的數(shù)為 .
②若點其對應(yīng)的數(shù)為,數(shù)軸上是否存在點,使點到點,點的距離之和為8?若存在,請求出的值;若不存在,請說明理由.
(3)當點以每秒鐘個單位長度從原點向右運動時,點以每秒鐘個單位長度的速度從點向左運動,點以每秒鐘個單位長度的速度從點向右運動,問它們同時出發(fā) 秒鐘時,(直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查方式合適的是( )
A. 為了了解外地游客對岳陽樓新景區(qū)的感受,小華利用周日在汴河街隨機采訪了名武漢游客
B. 為了了解全校學(xué)生用于做數(shù)學(xué)作業(yè)的時間,小民同學(xué)在網(wǎng)上通過向位好友做了調(diào)查
C. 為了了解“嫦娥一號”衛(wèi)星零部件的狀況,檢測人員采用了普查的方式
D. 為了了解全國青少年兒童在陽光體育運動啟動后的睡眠時間,統(tǒng)計人員采用了普查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計調(diào)查問卷時,下列提問是否合適?如果不合適的話應(yīng)該怎樣改進?
(1)你上學(xué)時使用的交通工具是
.汽車.摩托車.步行.其他
(2)你對老師的教學(xué)滿意嗎?
.比較滿意.滿意.非常滿意.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一塊邊長為1,周長記為P1的正三角形紙板,沿圖①的底邊剪去一塊邊長為的正三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪如圖掉正三角形紙板邊長的)后,得圖③,④,…,記第n(n≥3)塊紙板的周長為Pn,則P2018﹣P2017的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對稱軸是x=2.
(1)求拋物線表達式和頂點坐標;
(2)將該拋物線向右平移1個單位,平移后的拋物線與原拋物線相交于點A,求點A的坐標;
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點C,點A關(guān)于平移后拋物線的對稱軸的對稱點為點B,兩條拋物線在點A、C和點A、B之間的部分(包含點A、B、C) 記為圖象M.將直線y=2x﹣2向下平移b(b>0)個單位,在平移過程中直線與圖象M始終有兩個公共點,請你寫出b的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊△ABC內(nèi)的一點,且PA=5,PB=4,PC=3,將△APB繞點B逆時針旋轉(zhuǎn),得到△CQB.求:
(1)點P與點Q之間的距離;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀資料:
如圖1,在平面直角坐標系xOy中,A,B兩點的坐標分別為A(x1 , y1),B(x2 , y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A,B兩點間的距離為AB= .
我們知道,圓可以看成到圓心的距離等于半徑的點的集合,如圖2,在平面直角坐標系xOy中,A (x,y)為圓上任意一點,則點A到原點的距離的平方為OA2=|x﹣0|2+|y﹣0|2 , 當⊙O的半徑OA為r時,⊙O的方程可寫為:x2+y2=r2 .
問題拓展:
如果圓心坐標為P (a,b),半徑為r,那么⊙P的方程可以寫為 (x﹣a)2+(y﹣b)2=r2 .
綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使∠POA=30°,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.
①證明AB是⊙P的切線;
②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以點Q為圓心,OQ長為半徑的⊙Q的方程;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com