如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為(  )
A.6B.12C.32D.64

∵△A1B1A2是等邊三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1A2B2A3B3,B1A2B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類推:A6B6=32B1A2=32.
故選:C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三角形ABC中,AB=AC,D是BC上一點,∠BAD=40°,E是AC上一點,AD=AE,求∠EDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標原點,頂點A在x軸的正方向上,將△OAB折疊,使點B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長為x,△OB′E的周長為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當B′Ey軸時,求點B′和點E的坐標;
(3)當B′在OA上運動但不與O、A重合時,能否使△EB′F成為直角三角形?若能,請求出點B′的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊△ABC中,D是BC上一點,以AD為邊作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于點F,∠BAD=15°,求∠FDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是邊長為4的正三角形ABC,建立適當?shù)闹苯亲鴺讼担瑢懗龈鱾頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=α,將△BOC繞點C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)△COD是什么三角形?說明理由;
(2)若AO=n2+1,AD=n2-1,OD=2n(n為大于1的整數(shù)),求α的度數(shù);
(3)當α為多少度時,△AOD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在邊長為2的正三角形ABC中,已知點P是三角形內(nèi)任意一點,則點P到三角形的三邊距離之和PD+PE+PF等于( 。
A.
3
B.2
3
C.4
3
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,圖1是一塊邊長為1,面積記為S1的正三角形紙板,沿圖1的底邊剪去一塊邊長為
1
2
的正三角形紙板后得到圖2,然后沿同一底邊依次剪去一塊更小的正三角形紙板(即其邊長為前一塊被剪掉正三角形紙板邊長的
1
2
)后,得圖3,圖4,…,記第n(n≥3)塊紙板的面積為Sn,則Sn=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點A是BC上一點,△ABD、△ACE都是等邊三角形.
試說明:
(1)AM=AN;
(2)MNBC;
(3)∠DOM=60°.

查看答案和解析>>

同步練習冊答案