【題目】如圖,E是正方形ABCD對角線AC上一點,EFAB,EGBC,垂足分別為E,F,若正方形ABCD的周長是40 cm.

(1)求證:四邊形BFEG是矩形;

(2)求四邊形EFBG的周長;

(3)當(dāng)AF的長為多少時,四邊形BFEG是正方形?

【答案】(1)見解析;(2)20cm(3)當(dāng)AF=5 cm,四邊形BFEG是正方形. 

【解析】1)由正方形的性質(zhì)可得出ABBCB=90°,根據(jù)EFABEGBC利用垂直于同一條直線的兩直線互相平行,即可得出EFGBEGBF,再結(jié)合∠B=90°,即可證出四邊形BFEG是矩形;

2)由正方形的周長可求出正方形的邊長,根據(jù)正方形的性質(zhì)可得出AEF為等腰直角三角形,進而可得出AF=EF,再根據(jù)矩形的周長公式即可求出結(jié)論;

3)由正方形的判定可知:若要四邊形BFEG是正方形,只需EF=BF,結(jié)合AF=EF、AB=10cm,即可得出結(jié)論.

(1)證明:∵四邊形ABCD為正方形,

ABBC,B=90°.

EFAB,EGBC,

EFGB,EGBF.

∵∠B=90°,

∴四邊形BFEG是矩形;

(2)∵正方形ABCD的周長是40cm,

AB==10cm.

∵四邊形ABCD為正方形,

∴△AEF為等腰直角三角形,

AF=EF,

∴四邊形EFBG的周長C=2(EF+BF)=2(AF+BF)=20cm.

(3)若要四邊形BFEG是正方形,只需EF=BF,

AF=EFAB=10cm,

∴當(dāng)AF=5cm時,四邊形BFEG是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市煤氣公司準備給某新建小區(qū)的用戶安裝管道煤氣,現(xiàn)有用戶提出了安裝申請,此外每天還有新的用戶提出申請,假設(shè)煤氣公司每個安裝小組安裝的數(shù)量相同,且每天申請安裝的用戶數(shù)也相同,若煤氣公司安排個安裝小組同時做,則天就可以裝完所有新、舊用戶的申請;若煤氣公司安排個安裝小組同時做,則天可以裝完所有新舊用戶的申請.

求每天新申請安裝的用戶數(shù)及每個安裝小組每天安裝的數(shù)量;

如果要求在天內(nèi)安裝完所有新、舊用戶的申請,但前天煤氣公司只能派出個安裝小組安裝,那么最后幾天至少需要增加多少個安裝小組同時安裝,才能完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了統(tǒng)計知識后,數(shù)學(xué)老師請數(shù)學(xué)興趣小組的同學(xué)就本班同學(xué)的上學(xué)方式進行了一次調(diào)查統(tǒng)計.如圖甲乙是數(shù)學(xué)興趣小組的同學(xué)們通過手機和整理數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中提供的信息,解答一下的問題:

1)在扇形統(tǒng)計圖中,計算出步行部分所應(yīng)對的圓心角的度數(shù).

2)請問該班共有多少名學(xué)生?

3)在圖中將表示乘車的部分補充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的一個內(nèi)角是60,將它繞對角線的交點O順時針旋轉(zhuǎn)90后得到菱形ABCD.旋轉(zhuǎn)前后兩菱形重疊部分多邊形的周長為,則菱形ABCD的邊長為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對九年級一班、二班各10名學(xué)生進行漢字聽寫測試.計分采用10分制(得分均取整數(shù)),成績達到6分或6分以上為及格,得到9分為優(yōu)秀,成績?nèi)绫?所示,并制作了成績分析表(表2).

表1

一班

5

8

8

9

8

10

10

8

5

5

二班

10

6

6

9

10

4

5

7

10

8

表2

班級

平均數(shù)

中位數(shù)

眾數(shù)

方差

及格率

優(yōu)秀率

一班

7.6

8

a

3.82

70%

30%

二班

b

7.5

10

4.94

80%

40%

(1)在表2中,a=   ,b=   

(2)有人說二班的及格率、優(yōu)秀率均高于一班,所以二班比一班好;但也有人認為一班成績比二班好,請你給出堅持一班成績好的兩條理由;

(3)一班、二班獲滿分的中同學(xué)性別分別是1男1女、2男1女,現(xiàn)從這兩班獲滿分的同學(xué)中各抽1名同學(xué)參加“漢字聽寫大賽”,用樹狀圖或列表法求出恰好抽到1男1女兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=﹣2x﹣3的圖象與反比例函數(shù)y=m≠0)的圖象相交于點A(﹣2,1)和點B.

(1)求反比例函數(shù)的解析式;

(2)求點B的坐標;

(3)根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1 4a3b-6a2b2+12ab3÷2ab

2 a3·a4·a+(a2)4+(-2a4)2

3

4

5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們用表示不大于的最大整數(shù),例如:,;用表示大于的最小整數(shù),例如:,.解決下列問題:

1= ,,=

2)若=2,則的取值范圍是 ;若=1,則的取值范圍是 ;

3)已知滿足方程組,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案