【題目】將正方形ABCD(如圖1)作如下劃分:第1次劃分:分別連接正方形ABCD對邊的中點(diǎn)(如圖2),得線段HF和EG,它們交于點(diǎn)M,此時圖2中共有5個正方形;第2次劃分:將圖2左上角正方形AEMH按上述方法再作劃分,得圖3,則圖3中共有_________個正方形;若每次都把左上角的正方形依次劃分下去,則第100次劃分后,圖中共有_______個正方形;繼續(xù)劃分下去,能否將正方形ABCD劃分成有2011個正方形的圖形?需說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中每個小方格的邊長為1,且點(diǎn)A,B,C均為格點(diǎn).
(1)畫出△ABC關(guān)于直線l的對稱圖形△A1B1C1;
(2)求△ABC的面積;
(3)邊AB=_____________(不用寫過程);
(4)在直線l上找一點(diǎn)D,使AD+BD最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD和BC邊上的高線AE;
(3) 求四邊形ACBB′的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將自然數(shù)按以下規(guī)律排列:
表中數(shù)2在第二行第一列,與有序數(shù)對(2,1)對應(yīng),數(shù)5與(1,3)對應(yīng),數(shù)14與(3,4)對應(yīng),根據(jù)這一規(guī)律,數(shù)2014對應(yīng)的有序數(shù)對為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形,,,,,.動點(diǎn)從點(diǎn)出發(fā),沿射線的方向以每秒的速度運(yùn)動到點(diǎn)返回,動點(diǎn)從點(diǎn)出發(fā),在線段上以每秒的速度向點(diǎn)運(yùn)動,點(diǎn),分別從點(diǎn),同時出發(fā),當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,點(diǎn)停止運(yùn)動,設(shè)運(yùn)動時間為(秒).
(1)當(dāng)時,是否存在點(diǎn),使四邊形是平行四邊形,若存在,求出值;若不存在,請說明理由;
(2)當(dāng)為何值時,以,,,為頂點(diǎn)的四邊形面積等于;
(3)當(dāng)時,是否存在點(diǎn),使是等腰三角形?若存在,請直接寫出所有滿足要求的的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B以及直線l,AE⊥l,垂足為點(diǎn)E.
(1)尺規(guī)作圖:①過點(diǎn)B作BF⊥l,垂足為點(diǎn)F
②在直線l上求作一點(diǎn)C,使CA=CB;(要求:在圖中標(biāo)明相應(yīng)字母,保留作圖痕跡,不寫作法)
(2)在所作的圖中,連接CA、CB,若∠ACB=90°,∠CAE=,則∠CBF= (用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王小方開了一家服裝店,專賣羽絨服,下表是去年一年各月的銷售量情況:
月份 | 一 | 二 | 三 | 四 | 五 | 六 |
銷售量/件 | 120 | 90 | 40 | 10 | 6 | 4 |
月份 | 七 | 八 | 九 | 十 | 十一 | 十二 |
銷售量/件 | 3 | 5 | 3 | 120 | 80 | 120 |
(1)計算各季度的銷售量,并用一幅合適的統(tǒng)計圖表示;
(2)計算各季度的銷售量在全年銷售量中所占的百分比(精確到1%),并用適當(dāng)?shù)慕y(tǒng)計圖表示;
(3)用一幅合適的統(tǒng)計圖表示各季度銷售量的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:在邊長為的正方形中,對角線、交于點(diǎn).
探究:如圖,若點(diǎn)是對角線上任意一點(diǎn),則線段的長的取值范圍是__________;
探究:如圖,若點(diǎn)是內(nèi)任意一點(diǎn),點(diǎn)、分別是邊和對角線上的兩個動點(diǎn),則當(dāng) 的值在探究中的取值范圍內(nèi)變化時, 的周長是否存在最小值?如果存在,請求出周長的最小值,若不存在,請說明理由;
問題解決:如圖,在邊長為的正方形中,點(diǎn)是內(nèi)任意一點(diǎn),且,點(diǎn)、分別是邊和對角線上的兩個動點(diǎn),則當(dāng)的周長取到最小值時,求四邊形面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)為正方形的邊上一點(diǎn),,且,連接.
(1)求的度數(shù);
(2)如圖2,連接交于,交于.
求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com