【題目】如圖,⊙O是△ABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)D作BC的平行線,與AB的延長線相交于點(diǎn)P.
(1)求證:PD是⊙O的切線;
(2)若AB=3,AC=4,求線段PB的長.
【答案】(1)見解析;(2)PB=.
【解析】
(1)由直徑所對(duì)的圓周角為直角得到∠BAC為直角,再由AD為角平分線,得到一對(duì)角相等,根據(jù)同弧所對(duì)的圓心角等于圓周角的2倍及等量代換確定出∠DOC為直角,與平行線中的一條垂直,與另一條也垂直得到OD與PD垂直,即可得證;
(2)由PD與BC平行,得到一對(duì)同位角相等,再由同弧所對(duì)的圓周角相等及等量代換得到∠P=∠ACD,根據(jù)同角的補(bǔ)角相等得到一對(duì)角相等,利用兩對(duì)角相等的三角形相似;由三角形ABC為直角三角形,利用勾股定理求出BC的長,再由OD垂直平分BC,得到DB=DC,相似三角形的性質(zhì),得比例,求出所求即可.
(1)證明:∵圓心O在BC上,
∴BC是圓O的直徑,
∴∠BAC=90°,
連接OD,
∵AD平分∠BAC,
∴∠BAC=2∠DAC,
∵∠DOC=2∠DAC,
∴∠DOC=∠BAC=90°,即OD⊥BC,
∵PD∥BC,
∴OD⊥PD,
∵OD為圓O的半徑,
∴PD是圓O的切線;
(2)∵PD∥BC,
∴∠P=∠ABC,
∵∠ABC=∠ADC,
∴∠P=∠ADC,
∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,
∴∠PBD=∠ACD,
∴△PBD∽△DCA;
∵△ABC為直角三角形,
∴BC2=AB2+AC2=32+42=25,
∴BC=5,
∵OD垂直平分BC,
∴DB=DC,
∵BC為圓O的直徑,
∴∠BDC=90°,
在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=25,
∴DC=DB=,
∵△PBD∽△DCA,
∴,
則PB=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與x軸交于點(diǎn)A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,-3),對(duì)稱軸是直線x=1,直線BC與拋物線的對(duì)稱軸交于點(diǎn)D.
(1)求出拋物線的函數(shù)表達(dá)式;
(2)設(shè)點(diǎn)E時(shí)拋物線上一點(diǎn),且S△ABE=S△ABC,求tan∠ECO的值;
(3)點(diǎn)P在拋物線上,點(diǎn)Q在拋物線對(duì)稱軸上,若以B、C、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)稱軸為直線x=1的拋物線經(jīng)過A(﹣1,0)、C(0,3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,點(diǎn)D在y軸上,且OB=3OD
(1)求該拋物線的表達(dá)式;
(2)設(shè)該拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t
①當(dāng)0<t<3時(shí),求四邊形CDBP的面積S與t的函數(shù)關(guān)系式,并求出S的最大值;
②點(diǎn)Q在直線BC上,若以CD為邊,點(diǎn)C、D、Q、P為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC,∠BAC=90°,BC=,E為AB上一點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,若∠ACE=30°,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明調(diào)查了班級(jí)里20位同學(xué)本學(xué)期購買課外書的花費(fèi)情況,并將結(jié)果繪制成了如圖的統(tǒng)計(jì)圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費(fèi)的眾數(shù)和中位數(shù)分別是( 。
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
組別 | 成績x分 | 頻數(shù)人數(shù) |
第1組 | 6 | |
第2組 | 8 | |
第3組 | 14 | |
第4組 | a | |
第5組 | 10 |
請(qǐng)結(jié)合圖表完成下列各題:
求表中a的值; 頻數(shù)分布直方圖補(bǔ)充完整;
若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.電路圖上有四個(gè)開關(guān)A、B、C、D和一個(gè)小燈泡,閉合開關(guān)D或同時(shí)閉合開關(guān)A,B,C都可使小燈泡發(fā)光.
(1)任意閉合其中一個(gè)開關(guān),則小燈泡發(fā)光的概率等于 ;
(2)任意閉合其中兩個(gè)開關(guān),請(qǐng)用畫樹狀圖或列表的方法求出小燈泡發(fā)光的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2tx+t2﹣2t+4=0.
(1)當(dāng)t=3時(shí),解這個(gè)方程;
(2)若m,n是方程的兩個(gè)實(shí)數(shù)根,設(shè)Q=(m﹣2)(n﹣2),試求Q的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在汽車車輪修理廠,工人師傅常用兩個(gè)棱長為a的正方形卡住車輪.如圖是其截面圖(a小于車輪半徑),量出兩個(gè)正方形的距離AB的長為2b,就可以得出車輪的直徑.請(qǐng)你推求出直徑d的公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com