【題目】閱讀下面材料,完成(1)﹣(3)題
數(shù)學(xué)課上,老師出示了這樣一道題:如圖,四邊形ABCD,AD∥BC,AB=AD,E為對(duì)角線AC上一點(diǎn),∠BEC=∠BAD=2∠DEC,探究AB與BC的數(shù)量關(guān)系.
某學(xué)習(xí)小組的同學(xué)經(jīng)過(guò)思考,交流了自己的想法:
小柏:“通過(guò)觀察和度量,發(fā)現(xiàn)∠ACB=∠ABE”;
小源:“通過(guò)觀察和度量,AE和BE存在一定的數(shù)量關(guān)系”;
小亮:“通過(guò)構(gòu)造三角形全等,再經(jīng)過(guò)進(jìn)一步推理,就可以得到線段AB與BC的數(shù)量關(guān)系”.
……
老師:“保留原題條件,如圖2, AC上存在點(diǎn)F,使DF=CF=AE,連接DF并延長(zhǎng)交BC于點(diǎn)G,求的值”.
(1)求證:∠ACB=∠ABE;
(2)探究線段AB與BC的數(shù)量關(guān)系,并證明;
(3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).
【答案】(1)見(jiàn)解析;(2)CB=2AB;(3)
【解析】
(1)利用平行線的性質(zhì)以及角的等量代換求證即可;
(2)在BE邊上取點(diǎn)H,使BH=AE,可證明△ABH≌△DAE,△ABE∽△ACB,利用相似三角形的性質(zhì)從而得出結(jié)論;
(3)連接BD交AC于點(diǎn)Q,過(guò)點(diǎn)A作AK⊥BD于點(diǎn)K,得出,通過(guò)證明△ADK∽△DBC得出∠BDC=∠AKD=90°,再證DF=FQ,設(shè)AD=a,因此有DF=FC=QF=ka,再利用相似三角形的性質(zhì)得出AC=3ka,,,從而得出答案.
解:(1)∵∠BAD=∠BEC
∠BAD=∠BAE+∠EAD
∠BEC=∠ABE+BAE
∴∠EAD=∠ABE
∵AD∥BC
∴∠EAD=∠ACB
∴∠ACB=∠ABE
(2)在BE邊上取點(diǎn)H,使BH=AE
∵AB=AD
∴△ABH≌△DAE
∴∠AHB=∠AED
∵∠AHB+∠AHE=180°
∠AED+∠DEC=180°
∴∠AHE=∠DEC
∵∠BEC=2∠DEC
∠BEC=∠HAE+∠AHE
∴∠AHE=∠HAE
∴AE=EH
∴BE=2AE
∵∠ABE=∠ACB
∠BAE=∠CAB
∴△ABE∽△ACB
∴
∴CB=2AB;
(3)連接BD交AC于點(diǎn)Q,過(guò)點(diǎn)A作AK⊥BD于點(diǎn)K
∵AD=AB
∴
∠AKD=90°
∵
∴
∵AD∥BC
∴∠ADK=∠DBC
∴△ADK∽△DBC
∴∠BDC=∠AKD=90°
∵DF=FC
∴∠FDC=∠DFC
∵∠BDC=90°
∴∠FDC+∠QDF=90°
∠DQF+∠DCF=90°
∴DF=FQ
設(shè)AD=a
∴DF=FC=QF=ka
∵AD∥BC
∴∠DAQ=∠QCB
∠ADQ=∠QBC
∴△AQD∽△CQB
∴
∴AQ=ka=QF=CF
∴AC=3ka
∵△ABE∽△ACB
∴
∴
同理△AFD∽△CFG
∴
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD,兩條對(duì)角線相交于O點(diǎn),過(guò)點(diǎn)O作AC的垂線EF,分別交AD、BC于E、F點(diǎn),連結(jié)CE,若OCcm,CD=4cm,則DE的長(zhǎng)為( )
A.cmB.5cmC.3cmD.2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,O為原點(diǎn),點(diǎn)A(2,0),點(diǎn)P(1,m)(m>0)和點(diǎn)Q關(guān)于x軸對(duì)稱(chēng).過(guò)點(diǎn)P作PB∥x軸,與直線AQ交于點(diǎn)B,如果AP⊥BO,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1,2,3,4,另外有一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán),被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字1,2,3(如圖所示).
(1)從口袋中摸出一個(gè)小球,所摸球上的數(shù)字大于2的概率為 ;
(2)小龍和小東想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于5,那么小龍去;否則小東去.你認(rèn)為游戲公平嗎?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系中,△OAB的三個(gè)頂點(diǎn)O(0,0)、A(4,1)、B(4,4)均在格點(diǎn)上.
(1)畫(huà)出△OAB繞原點(diǎn)順時(shí)針旋轉(zhuǎn)后得到的△,并寫(xiě)出點(diǎn)的坐標(biāo);
(2)在(1)的條件下,求線段在旋轉(zhuǎn)過(guò)程中掃過(guò)的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是對(duì)角線AC上一動(dòng)點(diǎn),設(shè)PC的長(zhǎng)度為x,PE與PB的長(zhǎng)度和為y,圖②是y關(guān)于x的函數(shù)圖象,則圖象上最低點(diǎn)H的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)和點(diǎn).
(1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);
(2)點(diǎn)是拋物線上、之間的一點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),軸,交拋物線于點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),當(dāng)矩形的周長(zhǎng)最大時(shí),求點(diǎn)的橫坐標(biāo);
(3)如圖2,連接、,點(diǎn)在線段上(不與、重合),作,交線段于點(diǎn),是否存在這樣點(diǎn),使得為等腰三角形?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A是以BC為直徑的⊙O上一點(diǎn),I是△ABC的內(nèi)心,AI的延長(zhǎng)線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作BC的平行線交AB、AC的延長(zhǎng)線于E、F.下列說(shuō)法:①△DBC是等腰直角三角形;②EF與⊙O相切;③EF=2BC;④點(diǎn)B、I、C在以點(diǎn)D 為圓心的同一個(gè)圓上.其中一定正確的是_______(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】瀾鑫商場(chǎng)為“雙十一購(gòu)物節(jié)”請(qǐng)甲乙兩個(gè)廣告公司布置展廳,已知乙單獨(dú)完成此項(xiàng)任務(wù)的天數(shù)是甲單獨(dú)完成此任務(wù)天數(shù)的2倍.若兩公司合作4天,再由甲公司單獨(dú)做3天就可以完成任務(wù).
(1)甲公司與乙公司單獨(dú)完成這項(xiàng)任務(wù)各需多少天?
(2)甲公司每天所需費(fèi)用為5萬(wàn)元,乙公司每天所需費(fèi)用為2萬(wàn)元,要使這項(xiàng)工作的總費(fèi)用不超過(guò)40萬(wàn)元,則甲公司至多工作多少天?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com