【題目】(問(wèn)題情境)如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
(1)(問(wèn)題解決)延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷出中線AD的取值范圍是 .
(反思感悟)解題時(shí),條件中若出現(xiàn)“中點(diǎn)”、“中線”字樣,可以考慮構(gòu)造以該中點(diǎn)為對(duì)稱中心的中心對(duì)稱圖形,把分散的已知條件和所求證的結(jié)論集中到同個(gè)三角形中,從而解決問(wèn)題.
(2)(嘗試應(yīng)用)如圖②,△ABC中,∠BAC=90°,AD是BC邊上的中線,試猜想線段AB,AC,AD之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)(拓展延伸)如圖③,△ABC中,∠BAC=90°,D是BC的中點(diǎn),DM⊥DN,DM交AB于點(diǎn)M,DN交AC于點(diǎn)N,連接MN.當(dāng)BM=4,MN=5,AC=6時(shí),請(qǐng)直接寫(xiě)出中線AD的長(zhǎng).
【答案】(1)2<AD<8;(2)AB2+AC2=4AD2,理由見(jiàn)解析;(3)AD=5.
【解析】
(1)延長(zhǎng)AD至E,使DE=AD,由SAS證明△BDE≌△CDA,得出BE=AC=8,在△ABE中,由三角形的三邊關(guān)系求出AE的取值范圍,即可得出AD的取值范圍;
(2)延長(zhǎng)AD至E,使DE=AD,連接BE,如圖②所示,由(1)可知△BDE≌△CDA,然后只要證明∠ABE=90°,利用勾股定理即可得出結(jié)論;
(3)延長(zhǎng)ND到E,使得DN=DE,連接BE、EM,首先證明△BDE≌△CDN,求出∠ABD+∠DBE=90°,然后利用勾股定理可得BE=3,進(jìn)而得到AN=NC,利用三線合一證明DN⊥AC,同理可得DM⊥AB,然后證明四邊形AMDN是矩形即可解決問(wèn)題.
解:(1)延長(zhǎng)AD至E,使DE=AD,連接BE,如圖①所示,
∵AD是BC邊上的中線,
∴BD=CD,
在△BDE和△CDA中,,
∴△BDE≌△CDA(SAS),
∴BE=AC=6,
在△ABE中,由三角形的三邊關(guān)系得:ABBE<AE<AB+BE,
∴106<AE<10+6,即4<AE<16,
∴2<AD<8;
(2)AB2+AC2=4AD2,
理由:延長(zhǎng)AD至E,使DE=AD,連接BE,如圖②所示,
由(1)可知:△BDE≌△CDA,
∴BE=AC,∠E=∠CAD,
∵∠BAC=90°,
∴∠E+∠BAE=∠BAE+∠CAD=∠BAC=90°,
∴∠ABE=90°,
∴AB2+BE2=AE2,
∴AB2+AC2=4AD2;
(3)如圖③,延長(zhǎng)ND到E,使得DN=DE,連接BE、EM.
∵BD=DC,∠BDE=∠CDN,DE=DN,
∴△BDE≌△CDN,
∴BE=CM,∠EBD=∠C,
∵∠ABC+∠C=90°,
∴∠ABD+∠DBE=90°,
∵MD⊥EN,DE=DN,
∴ME=MN=5,
在Rt△BEM中,BE==3,
∴CN=BE=3,
∵AC=6,
∴AN=NC,
∵∠BAC=90°,BD=DC,
∴AD=DC=BD,
∴DN⊥AC,
在Rt△AMN中,AM==4,
∴AM=BM,
∵DA=DB,
∴DM⊥
∴∠AMD=∠AND=∠MAN=90°,
∴四邊形AMDN是矩形,
∴AD=MN=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開(kāi)展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬(wàn)元)與年產(chǎn)量x(萬(wàn)件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價(jià)z(元/件)與年銷售量x(萬(wàn)件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤(rùn)為W萬(wàn)元.(毛利潤(rùn)=銷售額﹣生產(chǎn)費(fèi)用)
(1)請(qǐng)直接寫(xiě)出y與x以及z與x之間的函數(shù)關(guān)系式;(寫(xiě)出自變量x的取值范圍)
(2)求W與x之間的函數(shù)關(guān)系式;(寫(xiě)出自變量x的取值范圍);并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會(huì)超過(guò)360萬(wàn)元,今年最多可獲得多少萬(wàn)元的毛利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄭州市農(nóng)業(yè)路高架橋二層的開(kāi)通,較大程度緩解了市內(nèi)交通的壓力,最初設(shè)計(jì)南陽(yáng)路口上橋匝道時(shí),其坡角為15°,后來(lái)從安全角度考慮將匝道坡角改為5°(見(jiàn)示意圖),如果高架橋高CD=6米,匝道BD和AD每米造價(jià)均為4 000元,那么設(shè)計(jì)優(yōu)化后修建匝道AD的投資將增加多少元?(參考數(shù)據(jù):sin5°≈0.08,sin15°≈0.25,tan5°≈0.09,tan15°≈0.27,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤,取名為“開(kāi)心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費(fèi)2元,若指針指向字母“B”,則獎(jiǎng)勵(lì)3元;若指針指向字母“C”,則獎(jiǎng)勵(lì)1元.一天,前來(lái)尋開(kāi)心的人轉(zhuǎn)動(dòng)轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】班長(zhǎng)小李對(duì)他所在班級(jí)(八年級(jí)班)全體同學(xué)的業(yè)余興趣愛(ài)好進(jìn)行了一次調(diào)查,據(jù)采集到的數(shù)據(jù)繪制了下面的統(tǒng)計(jì)圖表,根據(jù)調(diào)查他想寫(xiě)一個(gè)調(diào)查報(bào)告交給學(xué)校,建議學(xué)校根據(jù)學(xué)生的個(gè)人興趣愛(ài)好,適當(dāng)?shù)陌才乓恍┨亻L(zhǎng)培養(yǎng)或合理安排學(xué)生在校期間的課余活動(dòng),請(qǐng)你根據(jù)圖中提供的信息,幫助小李完成信息采集.
(1)該班共有學(xué)生_____人;
(2)在圖1中,請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在圖2中,在扇形統(tǒng)計(jì)圖中,“音樂(lè)”部分所對(duì)應(yīng)的圓心角的度數(shù)_____度;
(4)求愛(ài)好“書(shū)畫(huà)”的人數(shù)占該班學(xué)生數(shù)的百分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】佳佳商場(chǎng)賣某種衣服每件的成本為元,據(jù)銷售人員調(diào)查發(fā)現(xiàn),每月該衣服的銷售量(單位:件)與銷售單價(jià)(單位:元/件)之間存在如圖中線段所示的規(guī)律:
(1)求與之間的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
(2)若某月該商場(chǎng)銷售這種衣服獲得利潤(rùn)為元,求該月這種衣服的銷售單價(jià)為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形ABCD中,AB=4,E為CD邊中點(diǎn),F為AD邊中點(diǎn),AE交BD于G,交BF于H,連接DH.
(1)求證:BG=2DG;
(2)求AH:HG:GE的值;
(3)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com