某同學從家里出發(fā),騎自行車上學時,速度v(米/秒)與時間t(秒)的關(guān)系如圖a,A(10,5),B(130,5),C(135,0).
(1)求該同學騎自行車上學途中的速度v與時間t的函數(shù)關(guān)系式;
(2)計算該同學從家到學校的路程(提示:在OA和BC段的運動過程中的平均速度分別等于它們中點時刻的速度,路程=平均速度×時間);
(3)如圖b,直線x=t(0≤t≤135),與圖a的圖象相交于P、Q,用字母S表示圖中陰影部分面積,試求S與t的函數(shù)關(guān)系式;
(4)由(2)(3),直接猜出在t時刻,該同學離開家所走過的路程與此時S的數(shù)量關(guān)系?
(1)v與時間t的函數(shù)關(guān)系式:
v=
1
2
t(0≤t<10)
v=5(10≤t<130)
v=135-t(130≤t≤135)
;

(2)OA段平均速度為2.5m/s,BC段的為2.5m/s,
S=2.5×10+5×(130-10)+2.5×5=637.5m;

(3)①0≤t<10,s=
1
2
×
1
2
t×t=
1
4
t2
;
②10≤t<130,s=
1
2
×5×10+5(t-10)=5t-25
;
③130≤t≤135,s=
1
2
×5×10+5×120+
(5+135-t)×(t-130)
2
=-
1
2
t2+135t-8475

∴S與t的函數(shù)關(guān)系式:
S=
1
4
t2(0≤t<10)
S=5t-25(10≤t<130)
S=-
1
2
t2+135t-8475(130≤t≤135)
;

(4)相等的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=
8
3
3
,邊AB的垂直平分線CD分別與AB、x軸、y軸交于點C、G、D.
(1)求點G的坐標;
(2)求直線CD的解析式;
(3)在直線CD上和平面內(nèi)是否分別存在點Q、P,使得以O(shè)、D、P、Q為頂點的四邊形是菱形?若存在,求出點Q得坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,函數(shù)y=x的圖象l是第一、三象限的角平分線.
(1)實驗與探究:由圖觀察易知A(0,2)關(guān)于直線l的對稱點A′的坐標為(2,0),請在圖中分別標明B(5,3)、C(-2,5)關(guān)于直線l的對稱點B′、C′的位置,并寫出它們的坐標:B′______、C′______;
(2)歸納與發(fā)現(xiàn):結(jié)合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點P(m,n)關(guān)于第一、三象限的角平分線l的對稱點P′的坐標為______;
(3)類比與猜想:坐標平面內(nèi)任一點P(m,n)關(guān)于第二、四象限的角平分線的對稱點P′的坐標為______;
(4)運用與拓廣:已知兩點D(0,-3)、E(-1,-4),試在第一、三象限的角平分線l上確定一點Q,使點Q到D、E兩點的距離之和最小,并求出Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一次函數(shù)y=mx+2m+8與x軸、y軸交于點A、B,若圖象經(jīng)過點C(2,4).
(1)求一次函數(shù)的解析式;
(2)過點C作x軸的平行線,交y軸于點D,在△OAB邊上找一點E,使得△DCE構(gòu)成等腰三角形,求點E的坐標;
(3)點F是線段OB(不與點O、點B重合)上一動點,在線段OF的右側(cè)作正方形OFGH,連接AG、BG,設(shè)線段OF=t,△AGB的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

去年底“四川廣元臍橙大量生蛆,近期不要吃臍橙”的消息在網(wǎng)上流傳開來后,重慶奉節(jié)臍橙受此影響滯銷.為了減少果農(nóng)的損失,今年初,政府部門出臺了相關(guān)補貼政策:采取每噸補貼0.02萬元的辦法補償果農(nóng).
下圖是“農(nóng)夫果園”今年政府補助前、后臍橙銷售總收入y(萬元)與銷售量x(噸)的關(guān)系圖.請結(jié)合圖象解答以下問題:
(1)在出臺該項優(yōu)惠政策前,臍橙的售價為每噸多少萬元?
(2)出臺該項優(yōu)惠政策后,“農(nóng)夫果園”將剩余臍橙按原售價打九折趕緊全部銷完,加上政府補貼共收入11.7萬元,求果園共銷售了多少噸臍橙?
(3)①求今年出臺該項優(yōu)惠政策后y與x的函數(shù)關(guān)系式;
②去年“農(nóng)夫果園”銷售30噸,總收入為10.25萬元;若按今年的銷售方式,則至少要銷售多少噸臍橙,總收入才能達到或超過去年水平?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一輛貨車從A地開往B地,一輛轎車從B地開往A地,兩車同時出發(fā),設(shè)貨車離A地的距離為y1(km),轎車離A地的距離為y2(km),行駛時間為x(h).y1,y2與x的函數(shù)關(guān)系圖象如圖.
解讀信息:
(1)A,B兩地之間的距離為______km;
(2)y1與x的函數(shù)關(guān)系式為______,y2與x的函數(shù)關(guān)系式為______;
問題解決:
(3)設(shè)貨車、轎車之間的距離為s(km),求s與貨車行駛時間x(h)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,直線y=-
3
4
x+3
交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O(shè)1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O(shè)1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結(jié)論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結(jié)論,并證明正確的結(jié)論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在購買某場籃球賽門票時,設(shè)購買門票張數(shù)為x(張),總費用為y(元).
方案一:若單位贊助廣告費10000元,則該單位所購門票價格為每張60元.(總費用=贊助廣告費+總門票費)
方案二:購買門票的方式如圖所示.
解答下列問題:
(1)請分別求出方案二中當0≤x≤100時和當x>100時,y與x的函數(shù)關(guān)系式;
(2)若購買本場籃球賽門票是300張,你將選擇哪一種方案?請說明理由;
(3)若甲、乙兩個單位分別采用方案一、方案二購買本場籃球賽門票共700張,花去總費用共58000元,求甲、乙兩個單位各購買門票多少張?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,線段AB、CD分別是一輛轎車的油箱中剩余油量y1(升)與另一輛客車的油箱中剩余油量y2(升)關(guān)于行駛時間x(小時)的函數(shù)圖象.
(1)分別求y1、y2關(guān)于x的函數(shù)解析式,并寫出它們的定義域;
(2)如果兩車同時出發(fā),轎車的行駛速度為平均每小時90千米,客車的行駛速度為平均每小時80千米,當兩車油箱中剩余油量相同時,那么兩車的行駛路程相差多少千米?

查看答案和解析>>

同步練習冊答案