【題目】我市在舊城改造中,計劃在市內(nèi)一塊如下圖所示的三角形空地上種植草皮以美化環(huán)境,已知這種草皮每平方米售價元,則購買這種草皮至少需要______.

【答案】150a

【解析】

BA邊的高CD,設(shè)與BA的延長線交于點D,則∠DAC30°,由AC30m,即可求出CD15m,然后根據(jù)三角形的面積公式即可推出△ABC的面積為150m2,最后根據(jù)每平方米的售價即可推出結(jié)果.

解:如圖,作BA邊的高CD,設(shè)與BA的延長線交于點D

∵∠BAC150°,

∴∠DAC30°,

CDBD,AC30m,

CD15m,

AB20m

SABCAB×CD×20×15150m2,

∵每平方米售價a元,

∴購買這種草皮的價格為150a元.

故答案為:150a 元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點DOB的中點,點E是線段AB上的動點,連結(jié)DE,作DFDE,交OA于點F,連結(jié)EF.已知點EA點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.

(1)如圖1,當(dāng)t=3時,求DF的長.

(2)如圖2,當(dāng)點E在線段AB上移動的過程中,DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.

(3)連結(jié)AD,當(dāng)ADDEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,點.已知拋物線是常數(shù)),頂點為.

(Ⅰ)當(dāng)拋物線經(jīng)過點時,求頂點的坐標(biāo);

(Ⅱ)若點軸下方,當(dāng)時,求拋物線的解析式;

(Ⅲ) 無論取何值,該拋物線都經(jīng)過定點.當(dāng)時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新學(xué)期開學(xué),兩摞規(guī)格相同準(zhǔn)備發(fā)放的數(shù)學(xué)課本整齊地疊放在講臺上,請根據(jù)圖中所給的數(shù)據(jù)信息,解答下列問題:

(1)一本數(shù)學(xué)課本的高度是多少厘米?

(2)講臺的高度是多少厘米?

(3)請寫出整齊疊放在桌面上的x本數(shù)學(xué)課本距離地面的高度的代數(shù)式(用含有x的代數(shù)式表示);

(4)若桌面上有56本同樣的數(shù)學(xué)課本,整齊疊放成一摞,從中取走18本后,求余下的數(shù)學(xué)課本距離地面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,依次作正方形、正方形、正方形使得點、、在直線上,點、、,軸上,則點的坐標(biāo)是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點和點是線段的兩個端點,線段,點是點和點的對稱中心,點是點和點的對稱中心,以此類推,(圖中未畫出)是點和點的對稱中心.(為正整數(shù))

1)填空:線段____________ ;線段_____________ (用含的最簡代數(shù)式表示)

2)試寫出線段的長度(用含的代數(shù)式表示,無需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車制造廠開發(fā)了一款新式自行車,計劃6月份生產(chǎn)安裝600,由于抽調(diào)不出足夠的熟練工來完成新式自行車的安裝,工廠決定招聘一些新工人他們經(jīng)過培訓(xùn)后也能獨立進(jìn)行安裝.調(diào)研部門發(fā)現(xiàn):1名熱練工和2名新工人每日可安裝8輛自行車;2名熟練工和3名新工人每日可安裝14輛自行車

(1)每名熟練工和新工人每日分別可以安裝多少輛自行車?

(2)如果工廠招聘n名新工人(0<n<10).使得招聘的新工人和抽調(diào)熟練工剛好能完成6月份(30的安裝任務(wù)那么工廠有哪幾種新工人的招聘方案?

(3)該自行車關(guān)于輪胎的使用有以下說明本輪胎如安裝在前輪,安全行使路程為11千公里如安裝在后輪,安全行使路程為9千公里.請問一對輪胎能行使的最長路程是多少千公里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校八、九兩個年級各有學(xué)生180人,為了解這兩個年級學(xué)生的體質(zhì)健康情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.

收集數(shù)據(jù)

從八、九兩個年級各隨機(jī)抽取名學(xué)生,進(jìn)行了體質(zhì)健康測試,測試成績(百分制)如下:

八年級

九年級

整理、描述數(shù)據(jù)

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

八年級

0

0

1

11

1

九年級

1

0

0

7

(說明:成績分及以上為體質(zhì)健康優(yōu)秀,~分為體質(zhì)健康良好,~分為體質(zhì)健康合格,分以下為體質(zhì)健康不合格)

分析數(shù)據(jù)

兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:

年級

平均數(shù)

中位數(shù)

眾數(shù)

方差

八年級

33.6

九年級

52.1

請將以上兩個表格補(bǔ)充完整;

得出結(jié)論

(1)估計九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為__________;

(2)可以推斷出_______年級學(xué)生的體質(zhì)健康情況更好一些,理由為_________________.(至少從兩個不同的角度說明推斷的合理性).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD相交于點O,且OA=OB

1)求證:四邊形ABCD是矩形;

2)若AB=5,∠AOB=60°,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案