【題目】某校為了增強學生體質,推動“陽光體育”運動的廣泛開展,學校準備購買一批運動鞋供學生借用,學校體育部從八年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖①和②,請根據(jù)相關信息,解答下列問題:
(1)圖①中m的值為;
(2)本次調查獲取的樣本數(shù)據(jù)的眾數(shù)是 , 中位數(shù)是;
(3)該校計劃購買200雙運動鞋,校體育部對各種鞋號運動鞋的購買數(shù)量做出如下估計:
根據(jù)樣本數(shù)據(jù)分析得知:各種鞋號的運動鞋購買數(shù)量如下: |
請你分析:校體育部的估計是否合理?如果合理,請將體育部的估算過程補充完整,若不合理,請說明理由,并且給學校提一個合理化的建議.
【答案】
(1)15
(2)35;36
(3)解:不合理,
因為學校是在八年級學生中隨機抽取樣本,所以樣本數(shù)據(jù)僅能代表八年級學生,對于全校學生來說,各個年級學生身體的發(fā)展情況有較大差異,所以對于全體學生來說不具有代表性.
建議:建議學校在三個年級中隨機抽取樣本進行估計,這樣估計的結果會具有較好的代表性
【解析】解:(1)m%=1﹣30%﹣25%﹣20%﹣10%=15%, 所以答案是:15;(2)∵在這組樣本數(shù)據(jù)中,35出現(xiàn)了12次,出現(xiàn)次數(shù)最多,
∴這組樣本數(shù)據(jù)的眾數(shù)為35;
∵將這組樣本數(shù)據(jù)從小到大得順序排列,其中處于中間的兩個數(shù)都為36,
∴中位數(shù)為 =36
所以答案是:35,36;
【考點精析】利用扇形統(tǒng)計圖和條形統(tǒng)計圖對題目進行判斷即可得到答案,需要熟知能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校七,八年級學生的睡眠情況,隨機抽取了該校七,八年級部分學生進行調查,已知抽取七年級與八年級的學生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如下統(tǒng)計圖表.
睡眠情況分組表(單位:時)
組別 | 睡眠時間x |
A | x≤7.5 |
B | 7.5≤x≤8.5 |
C | 8.5≤x≤9.5 |
D | 9.5≤x≤10.5 |
E | x≥10.5 |
根據(jù)圖表提供的信息,回答下列問題:
(1)求統(tǒng)計圖中的a;
(2)抽取的樣本中,八年級學生睡眠時間在C組的有多少人?
(3)已知該校七年級學生有755人,八年級學生有785人,如果睡眠時間x(時)滿足:7.5≤x≤9.5,稱睡眠時間合格,試估計該校七、八年級學生中睡眠時間合格的共有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分線,將△ABC沿直線CD翻折,點A落在點E處,那么AE的長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=3,BC=2,點E、F分別在兩腰上, 且EF∥AD,AE:EB=2:1;
(1)求線段EF的長;
(2)設 = , = ,試用 、 表示向量 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,在同樣的條件下對這種幼樹進行大量移植,并統(tǒng)計成活情況,記錄如下(其中頻率結果保留小數(shù)點后三位)
移植總數(shù)(n) | 10 | 50 | 270 | 400 | 750 | 1500 | 3500 | 7000 | 9000 |
成活數(shù)(m) | 8 | 47 | 235 | 369 | 662 | 1335 | 3203 | 6335 | 8118 |
成活的頻率 | 0.800 | 0.940 | 0.870 | 0.923 | 0.883 | 0.890 | 0.915 | 0.905 | 0.902 |
由此可以估計幼樹移植成活的概率為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是( )
A.左、右兩個幾何體的主視圖相同
B.左、右兩個幾何體的左視圖相同
C.左、右兩個幾何體的俯視圖不相同
D.左、右兩個幾何體的三視圖不相同
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù) .
(1)求證:不論k為任何實數(shù),該函數(shù)的圖象與x軸必有兩個交點;
(2)若該二次函數(shù)的圖象與x軸的兩個交點在點A(1,0)的兩側,且關于x的一元二次方程k2x2+(2k+3)x+1=0有兩個不相等的實數(shù)根,求k的整數(shù)值;
(3)在(2)的條件下,關于x的另一方程x2+2(a+k)x+2a﹣k2+6k﹣4=0 有大于0且小于3的實數(shù)根,求a的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校綜合實踐活動小組的同學欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB為2m,臺階AC的傾斜角∠ACB為30°,且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com