【題目】已知:在RtABC中,C=90°,BC=1,AC=,點(diǎn)D是斜邊AB的中點(diǎn),點(diǎn)E是邊AC上一點(diǎn),則DE+BE的最小值為( 。

A. 2

B.

C.

D.

【答案】C

【解析】

B關(guān)于AC的對(duì)稱點(diǎn)B',連接B′D,易求∠ABB'=60°,則AB=AB',且△ABB'為等邊三角形,BE+DE=DE+EB'B'與直線AB之間的連接線段,其最小值為B'AB的距離=AC=,所以最小值為

解:作B關(guān)于AC的對(duì)稱點(diǎn)B',連接B′D,

∵∠ACB=90°,∠BAC=30°,

∴∠ABC=60°,

∵AB=AB',

∴△ABB'為等邊三角形,

∴BE+DE=DE+EB'B'與直線AB之間的連接線段,

∴最小值為B'AB的距離=AC=,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),∠EAF=45°,△ECF的周長為4,則正方形ABCD的邊長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線上有n(n≥2的正整數(shù))個(gè)點(diǎn),每相鄰兩點(diǎn)間距離為1,從左邊第1個(gè)點(diǎn)起跳,且同時(shí)滿足以下三個(gè)條件:
①每次跳躍均盡可能最大;
②跳n次后必須回到第1個(gè)點(diǎn);
③這n次跳躍將每個(gè)點(diǎn)全部到達(dá),
設(shè)跳過的所有路程之和為Sn , 則S25=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC和△DEF(頂點(diǎn)為網(wǎng)格線的交點(diǎn)),以及過格點(diǎn)的直線l

(1)將△ABC向右平移兩個(gè)單位長度,再向下平移兩個(gè)單位長度,畫出平移后的三角形.

(2)畫出△DEF關(guān)于直線l對(duì)稱的三角形.

(3)填空:∠C+∠E   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)將ABD平移,使D沿BD延長線移至C得到A′B′D′,A′B′交AC于E,AD平分BAC.

(1)猜想B′EC與A′之間的關(guān)系,并寫出理由.

(2)如圖將ABD平移至如圖(2)所示,得到A′B′D′,請(qǐng)問:A′D平分B′A′C嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣1與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(﹣1,m).
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P(n,﹣1)是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,延長EP交直線AB于點(diǎn)F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.

證明:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90°(垂直定義)

∴DG∥AC(

∴∠2=

∵∠1=∠2(已知)

∴∠1=∠ (等量代換)

∴EF∥CD(

∴∠AEF=∠

∵EF⊥AB(已知)

∴∠AEF=90°(

∴∠ADC=90°(

∴CD⊥AB(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)填表,使上下每對(duì)x,y的值是方程3x+y=5的解

x

﹣2

0.4

   

   

y

   

   

0

3

(2)寫出二元一次方程3x+y=5的正整數(shù)解:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC=8cm,BD=6cm,DH⊥AB于點(diǎn)H,且DH與AC交于G,則GH=(
A. cm
B. cm
C. cm
D. cm

查看答案和解析>>

同步練習(xí)冊答案