【題目】如圖,點O為平面直角坐標系的原點,在長方形OABC中,OC∥AB,OA∥BC,兩邊OC、OA分別在x軸和y軸上,且點B(a,b)滿足:+(2b+6)2=0.

(1)求點B的坐標;

(2)如圖1,若過點B的直線BP與長方形OABC的邊交于點P,且將長方形OABC的面積分為1:3兩部分,求點P的坐標;

(3)如圖2,M為線段OC一點,且∠ABM=∠AMB,Nx軸負半軸上一動點,∠MAN的平分線ADBM的延長線于點D,在點N運動的過程中,試判斷∠ANM∠D的數(shù)量關系,并說明理由.

【答案】(1)B(4,﹣3)(2)(2,0)或(0,﹣)(3)∠ANM=2∠D

【解析】

(1)利用非負數(shù)的性質即可解決問題;

(2)分兩種情形分別討論求解即可;

(3)結論:∠ANM=2D.作MEADABE.延長BAF.利用平行線的性質,角平分線的定義即可解決問題;

(1)由題意:4﹣a=0,2b+6=0,

∴a=4,b=﹣3,

∴B(4,﹣3).

(2)①當點P在OC上時,由題意:SBCP:S四邊形OABC=1:4,

CP3=×3×4,

∴PC=2.

∴OP=4﹣2=2,

∴P(2,0).

當點P中OA上時,SABP=S四邊形OABC,

PA4=×3×4

∴PA=

∴OP=3﹣=,

∴P(0,﹣),

綜上所述,滿足條件的點P坐標為(2,0)或(0,﹣).

(3)結論:∠ANM=2∠D.

理由:作MEAD交AB于E.延長BA到F.

∵ME∥AD,

∴∠1=∠D,∠2=∠3,

AD平分∠MAN,

∴∠MAN=2∠3,

∵OC∥AB,

∴∠ABM=∠CMB,

∵∠AMB=∠CMB,

∴∠AMC=2∠AMB,

∵OC∥AB,

∴∠FAM=∠AMC=2∠AMB,

∴∠ANM=2∠AMB﹣2∠3

=2∠AMB﹣2∠2

=2(∠AMB﹣∠2)

=2∠1

=2∠D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B,0),且與y軸相交于點C

1求這條拋物線的表達式

2)求∠ACB的度數(shù);

3設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DEAC,當DCEAOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補.若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA,OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立,(2)OM+ON的值不變,(3)四邊形PMON的面積不變,(4)MN的長不變,

其中正確的為__________(請?zhí)顚懡Y論前面的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學課上,張老師出示了一個題目:如圖,ABCD的對角線相交于點O,過點OEF垂直于BDAB,CD分別于點F,E,連接DF,BE.請根據(jù)上述條件,寫出一個正確結論.其中四位同學寫出的結論如下:

小青:OE=OF;小何:四邊形DFBE是正方形;

小夏:S四邊形AFED=S四邊形FBCE;小雨:∠ACE=CAF.

這四位同學寫出的結論中不正確的是( 。

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】證明命題對角線相等的平行四邊形是矩形,要根據(jù)題意,畫出圖形,并用符號表示已知和求證,寫出證明過程,下面是小張同學根據(jù)題意畫出的圖形,并寫出了不完整的已知和求證.

已知:如圖,ABCD是平行四邊形,ACBD是對角線,且   

求證:   

請你補全已知和求證,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AC上取點B,在其同一側作兩個等邊三角形ABD BCE ,連接AECDGF,下列結論正確的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,輪船從A港出發(fā),以28海里/小時的速度向正北方向航行,此時測的燈塔M在北偏東30°的方向上.半小時后,輪船到達B處,此時測得燈塔M在北偏東60°的方向上.

1)求輪船在B處時與燈塔M的距離;

2)輪船從B處繼續(xù)沿正北方向航行,又經(jīng)半小時后到達C處.求:此時輪船與燈塔M的距離是多少?燈塔M在輪船的什么方向上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉動轉盤一次,當轉盤停止轉動時,記錄下指針所指扇形中的數(shù)字;接著再轉動轉盤一次,當轉盤停止轉動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(﹣,﹣ ),且圖象與x軸的交點到原點的距離為1,則該一次函數(shù)的解析式為:_____

查看答案和解析>>

同步練習冊答案