已知:如圖,△ABC內(nèi)接于⊙O,⊙B與⊙O相交于點A、D、AD交BC于點E,交⊙O的直徑BF于點G.
(1)求證:①△ABC∽△EBA;②AE•ED=AB2-EB2
(2)AB=,BF=15,AE:ED=1:3,求BC的長.

【答案】分析:(1)①由AD是⊙B與⊙O的公共弦,可得AD⊥OB,由垂徑定理與圓周角定理易得∠C=∠BAD,繼而可證得:△ABC∽△EBA;
②由勾股定理與平方差公式可得在Rt△ABG中,AB2=BG2+AG2,在Rt△EBG中,EB2=BG2+EG2,即AB2-EB2=AG2-EG2=(AG+EG)(AG-EG)=(DG+EG)(AG-EG)=ED•AE;
(2)首先連接OA,CF,由勾股定理可求得BG的長,繼而求得AG與AE,EG的長,即可求得∠EBG的度數(shù),然后由三角函數(shù)的求得BC的長.
解答:(1)證明:①∵AD是⊙B與⊙O的公共弦,
∴AD⊥OB,
=,
∴∠C=∠BAD,
∵∠ABE=∠CBA(公共角),
∴△ABC∽△EBA;

②∵AD⊥OB,
∴AG=DG,
∵在Rt△ABG中,AB2=BG2+AG2,在Rt△EBG中,EB2=BG2+EG2,
∴AB2-EB2=AG2-EG2=(AG+EG)(AG-EG)=(DG+EG)(AG-EG)=ED•AE,
∴AE•ED=AB2-EB2

(2)解:連接OA,CF,
∵BF=15,
∴OB=OA=
設BG=x,
則OE=-x,
在Rt△ABG中,AE2=AB2-BG2,在Rt△OAG中,AE2=OA2-OG2,
∴AB2-BG2=OA2-OG2,
∵AB=
∴(32-x2=(2-(-x)2,
解得:x=3,
∴BG=3,
∴AG==6,
∴AD=2AG=12,
∵AE:ED=1:,
∴AE=3,
∴EG=AG-AE=3,
∴△BEG是等腰直角三角形,
∴∠EBG=45°,
∵BF是直徑,
∴∠BCF=90°,
∴BC=BF•cos45°=
點評:此題考查了圓周角定理、垂徑定理、相交圓的性質(zhì)以及勾股定理等知識.此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想與方程思想的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關(guān)系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習冊答案