【題目】如圖,已知正方形ABCD中,E、F分別是正方形AD、CD邊上的點(diǎn),且∠EBF=45°,對(duì)角線ACBE,BFM,N,對(duì)于以下結(jié)論,正確的是( )①AE+CF=FE△ABE△BCFAM2+CN2=MN2△EFD的周長等于2AB

A.①②③B.①②④C.①③④D.①②③④

【答案】C

【解析】

延長DA至點(diǎn)H,使AH=CF,連接BH,證明△BCF△BAH,△HBE△FBE即可判斷①②④,然后作BG⊥EF,連接MG,NG,證明△BAM△BGM,△BCN△BGN,根據(jù)勾股定理即可判定③.

解:延長DA至點(diǎn)H,使AH=CF,連接BH,

∵四邊形ABCD為正方形,

AB=BC,∠BAH=∠BCF=90°,

△BCF△BAH

△BCF△BAHSAS),

∴BF=BH∠CBF=∠ABH,CF=AH,

∵∠EBF=45°

∠ABE+∠CBF=45°,則∠HBE=45°,

△HBE△FBE

△HBE△FBESAS),

∴HE=HF,即CF+AE=EF,故正確;

∵題上沒有說明AE=CF,故錯(cuò)誤;

△EFD的周長=ED+EF+FD=ED+AE+CF+FD=2AB,故正確;

BG⊥EF,連接MG,NG

△HBE△FBE,

∠BEA=∠BEG,從而得到△BAE△BGE,△BCF△BGF

∠ABE=∠GBE,∠CBF=∠GBF,從而得到△BAM△BGM,△BCN△BGN,

AM=GMCN=NG,∠BAM=∠BGM∠BCN=∠BGN,

∵∠BAM+∠BCN=90°,

∠MGN=90°,

GM2+GN2=MN2

AM2+CN2=MN2,故正確;

故正確的是①③④,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=CDA=90°BEAD于點(diǎn)E,且四邊形ABCD的面積為144,則BE________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,關(guān)于x的二次函數(shù)yax22axa0)的頂點(diǎn)為C,與x軸交于點(diǎn)O、A,關(guān)于x的一次函數(shù)y=﹣axa0).

1)試說明點(diǎn)C在一次函數(shù)的圖象上;

2)若兩個(gè)點(diǎn)(ky1)、(k+2,y2)(k≠0,±2)都在二次函數(shù)的圖象上,是否存在整數(shù)k,滿足?如果存在,請(qǐng)求出k的值;如果不存在,請(qǐng)說明理由;

3)若點(diǎn)E是二次函數(shù)圖象上一動(dòng)點(diǎn),E點(diǎn)的橫坐標(biāo)是n,且﹣1≤n≤1,過點(diǎn)Ey軸的平行線,與一次函數(shù)圖象交于點(diǎn)F,當(dāng)0a≤2時(shí),求線段EF的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,有一座拋物線形拱橋,橋下面在正常水位時(shí),AB寬20 m,水位上升到警戒線CD時(shí),CD到拱橋頂E的距離僅為1 m,這時(shí)水面寬度為10 m.

(1)在如圖所示的坐標(biāo)系中求拋物線的解析式;

(2)若洪水到來時(shí),水位以每小時(shí)0.3 m的速度上升,從正常水位開始,持續(xù)多少小時(shí)到達(dá)警戒線?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A1,A2,A3,…,An是x軸上的點(diǎn),且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分別過點(diǎn)A1,A2,A3,…,An作x軸的垂線交二次函數(shù)y=x2(x>0)的圖象于點(diǎn)P1,P2,P3,…,Pn.若記△OA1P1的面積為S1,過點(diǎn)P1作P1B1⊥A2P2于點(diǎn)B1,記△P1B1P2的面積為S2,過點(diǎn)P2作P2B2⊥A3P3于點(diǎn)B2,記△P2B2P3的面積為S3……依次進(jìn)行下去,最后記△Pn-1Bn-1Pn(n>1)的面積為Sn,則Sn=(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司對(duì)一種新型產(chǎn)品的產(chǎn)銷情況進(jìn)行了營銷調(diào)查,發(fā)現(xiàn)年產(chǎn)量為x(噸)時(shí),所需的成本y(萬元)與(x2+60x+800)成正比例,投入市場(chǎng)后當(dāng)年能全部售出且發(fā)現(xiàn)每噸的售價(jià)p(單位:萬元)由基礎(chǔ)價(jià)與浮動(dòng)價(jià)兩部分組成,其中基礎(chǔ)價(jià)是固定不變的,浮動(dòng)價(jià)與x成正比例,比例系數(shù)為-.在營銷中發(fā)現(xiàn)年產(chǎn)量為20噸時(shí),所需的成本是240萬元,并且年銷售利潤W(萬元)的最大值為55萬元.(注:年利潤=年銷售額-成本)

(1)求y(萬元)與x(噸)之間滿足的函數(shù)解析式;

(2)求年銷售利潤W與年產(chǎn)量x(噸)之間滿足的函數(shù)解析式;

(3)當(dāng)年銷售利潤最大時(shí),每噸的售價(jià)是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個(gè)四分之一圓組成(半徑相同)

請(qǐng)用代數(shù)式表示裝飾物的面積:________,用代數(shù)式表示窗戶能射進(jìn)陽光的面積是______(結(jié)果保留π)

⑵當(dāng)a=,b=1時(shí),求窗戶能射進(jìn)陽光的面積是多少?(取π≈3

⑶小亮又設(shè)計(jì)了如圖2的窗簾(由一個(gè)半圓和兩個(gè)四分之一圓組成,半徑相同),請(qǐng)你幫他算一算此時(shí)窗戶能射進(jìn)陽光的面積是否更大?如果更大,那么大多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣2(k+1)x+k2=0有兩個(gè)實(shí)數(shù)根x1、x2

(1)求k的取值范圍;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在邊CD上,且DE=1.

(1)感知:如圖①,連接AE,過點(diǎn)EEF⊥AE,交BC于點(diǎn)F,連接AF,易證:△ADE≌△ECF(不需要證明);

(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過點(diǎn)EEF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE∽△ECF;

(3)應(yīng)用:如圖③,若EFAB邊于點(diǎn)F,其他條件不變,且△PEF的面積是3,則AP的長為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案