【題目】已知拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點(diǎn),其橫坐標(biāo)為1。則一次函數(shù)y=bx+ac的圖象可能是( )
A. (A) B. (B) C. (C) D. (D)
【答案】B
【解析】分析: 根據(jù)拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點(diǎn),可得b>0,根據(jù)交點(diǎn)橫坐標(biāo)為1,可得a+b+c=b,可得a,c互為相反數(shù),依此可得一次函數(shù)y=bx+ac的圖象.
詳解: ∵拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點(diǎn),
∴b>0,
∵交點(diǎn)橫坐標(biāo)為1,
∴a+b+c=b,
∴a+c=0,
∴ac<0,
∴一次函數(shù)y=bx+ac的圖象經(jīng)過第一、三、四象限.
故選:B.
點(diǎn)睛: 考查了一次函數(shù)的圖象,反比例函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),關(guān)鍵是得到b>0,ac<0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰.
(1)求點(diǎn)的坐標(biāo);
(2)如圖2,在平面內(nèi)是否存在一點(diǎn),使得以為頂點(diǎn)的四邊形為平行四邊形?若存在,請寫出點(diǎn)坐標(biāo);若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車間同時從A地出發(fā)前往B地,沿著相同的路線勻速駛向B地,甲車中途由于某種原因休息了1小時,然后按原速繼續(xù)前往B地,兩車離A地的距離y(km)與行駛的時間x(h)之間的函數(shù)關(guān)系如圖所示:
(1)A、B兩地的距離是__________km;
(2)求甲車休息后離A地的距離y(km)與x(h)之間的函數(shù)關(guān)系;
(3)請直接寫出甲、乙兩車何時相聚15km。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知2輛A型車和1輛B型車載滿貨物一次可運(yùn)貨10噸.用1輛A型車和2輛B型車載滿貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時租用A型車a輛和B型車b輛,一次運(yùn)完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:
(1)1輛A型車和1輛B型車載滿貨物一次分別可運(yùn)貨物多少噸?
(2)請幫助物流公司設(shè)計(jì)租車方案
(3)若A型車每輛車租金每次100元,B型車每輛車租金每次120元.請選出最省錢的租車方案,并求出最少的租車費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,,分別為,上的點(diǎn),,交于點(diǎn),交于點(diǎn),為的中點(diǎn),交于點(diǎn),連接.下列結(jié)論:①;②;③;④.其中正確的結(jié)論有( )
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,邊長為2的正方形中,是對角線上的一個動點(diǎn)(與點(diǎn)、不重合),過點(diǎn)作,交射線于點(diǎn),過點(diǎn)作,垂足為點(diǎn).
(1)求證::
(2)在點(diǎn)的運(yùn)動過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值,寫出解答過程:若變化,試說明理由:
(3)在點(diǎn)的運(yùn)動過程中,能否為等腰三角形?如果能,直接寫出此時的長;如果不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D在邊BC所在的直線上,過點(diǎn)D作DF∥AC交直線AB于點(diǎn)F,DE∥AB交直線AC于點(diǎn)E.
(1)當(dāng)點(diǎn)D在邊BC上時,如圖①,求證:DE+DF=AC.
(2)當(dāng)點(diǎn)D在邊BC的延長線上時,如圖②;當(dāng)點(diǎn)D在邊BC的反向延長線上時,如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數(shù)量關(guān)系,不需要證明.
(3)若AC=6,DE=4,則DF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.
(1)菱形ABCO的邊長
(2)求直線AC的解析式;
(3)動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動時間為t秒,
①當(dāng)0<t<時,求S與t之間的函數(shù)關(guān)系式;
②在點(diǎn)P運(yùn)動過程中,當(dāng)S=3,請直接寫出t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com