【題目】如圖,是將拋物線(xiàn)y=-x2 平移后得到的拋物線(xiàn),其對(duì)稱(chēng)軸為x=1,與x軸的一個(gè)交點(diǎn)為A(-1,0) ,另一交點(diǎn)為B,與y軸交點(diǎn)為C.

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;

(2)若點(diǎn)N 為拋物線(xiàn)上一點(diǎn),且BCNC,求點(diǎn)N的坐標(biāo);

3)點(diǎn)P是拋物線(xiàn)上一點(diǎn),點(diǎn)Q是一次函數(shù)y=x+的圖象上一點(diǎn),若四邊形OAPQ為平行四邊形,這樣的點(diǎn)PQ是否存在?若存在,分別求出點(diǎn)P、Q的坐標(biāo),若不存在,說(shuō)明理由.

【答案】1y=-x2+2x+3;(2)(1,4; 3P、Q的坐標(biāo)是(0,3)(1,3) ,

【解析】試題分析

1)由題意可設(shè)該拋物線(xiàn)的解析式為,代入點(diǎn)(-10)求出k的值即可得到所求解析式;

(2)由(1)中所得拋物線(xiàn)的解析式可求得點(diǎn)B、C的坐標(biāo),從而可求出直線(xiàn)BC的解析式,由直線(xiàn)NC⊥BC且過(guò)點(diǎn)C可求得NC的解析式,把NC的解析式和拋物線(xiàn)的解析式聯(lián)立得到方程組,解方程組即可求得點(diǎn)N的坐標(biāo);

3如下圖,由題意易得PQ=OA=1,且PQOA,設(shè)點(diǎn)P的橫坐標(biāo)為t,則可用含“t”的式子表達(dá)出Q的坐標(biāo),再把Q的坐標(biāo)代入函數(shù)y=x+ 中,即可解得“t”的值,從而可求得PQ的坐標(biāo).

試題解析

1)設(shè)拋物線(xiàn)的解析式是y=-x-12+4.把 (-1,0)代入得 0=-1-12+k

解得,k=4

則拋物線(xiàn)的解析式是 y=-x-12+4

y=-x2+2x+3;

2設(shè)直線(xiàn)BC的解析式為y=kx+bk≠0),代入點(diǎn)B、C的坐標(biāo)得

解得:

直線(xiàn)BC的解析式為y=-x+3,

BC⊥NC

可設(shè)直線(xiàn)CN的解析式為y=x+m.

∵C0,3在直線(xiàn)CN

∴0+m=3,解得m=3,即直線(xiàn)CN的解析式為 y=x+3,

由: ,即 x+3=-x2+2x+3=-x2+2x+3,解得:x1=0,x2=1,

∴N的坐標(biāo)是(1,4,

3四邊形OAPQ是平行四邊形,則PQ=OA=1,且PQ∥OA,

設(shè)P(t,-t2+2t+3),則Q(t+1, -t2+2t+3) ,將P、Q的坐標(biāo)代入

-t2+2t+3=,

整理,得2t2-t=0, ,

解得t=0

-t2+2t+3 的值為3

P、Q的坐標(biāo)是(0,3)(1,3) ,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為a的菱形ABCD中,∠DAB60°,E是異于A、D兩點(diǎn)的動(dòng)點(diǎn),FCD上的動(dòng)點(diǎn),滿(mǎn)足AE+CFa,△BEF的周長(zhǎng)最小值是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng) 實(shí)驗(yàn)、猜想與證明

問(wèn)題情境

1)數(shù)學(xué)活動(dòng)課上,小穎向同學(xué)們提出了這樣一個(gè)問(wèn)題:如圖(1),在矩形ABCD中,AB=2BC,M、N分別是AB,CD的中點(diǎn),作射線(xiàn)MN,連接MD,MC,請(qǐng)直接寫(xiě)出線(xiàn)段MDMC之間的數(shù)量關(guān)系.

解決問(wèn)題

2)小彬受此問(wèn)題啟發(fā),將矩形ABCD變?yōu)槠叫兴倪呅危渲小?/span>A為銳角,如圖(2),AB=2BCM,N分別是AB,CD的中點(diǎn),過(guò)點(diǎn)CCEAD交射線(xiàn)AD于點(diǎn)E,交射線(xiàn)MN于點(diǎn)F,連接ME,MC,則ME=MC,請(qǐng)你證明小彬的結(jié)論;

3)小麗在小彬結(jié)論的基礎(chǔ)上提出了一個(gè)新問(wèn)題:∠BME與∠AEM有怎樣的數(shù)量關(guān)系?請(qǐng)你回答小麗提出的這個(gè)問(wèn)題,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),如圖所示,并規(guī)定:顧客消費(fèi)200元(含200元)以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)九折、八折、七折區(qū)域,顧客就可以獲得此項(xiàng)優(yōu)惠,如果指針恰好在分割線(xiàn)上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).

1)某顧客正好消費(fèi)220元,他轉(zhuǎn)一次轉(zhuǎn)盤(pán),他獲得九折、八折、七折優(yōu)惠的概率分別是多少?

2)某顧客消費(fèi)中獲得了轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)的機(jī)會(huì),實(shí)際付費(fèi)168元,請(qǐng)問(wèn)他消費(fèi)所購(gòu)物品的原價(jià)應(yīng)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程 x2-6x+m+4=0有兩個(gè)實(shí)數(shù)根 x1x2.

1)求m的取值范圍;

2)若 x1,x2滿(mǎn)足x2-2x1=-3 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了讓更多的失學(xué)兒童重返校園,某社區(qū)組織獻(xiàn)愛(ài)心手拉手捐款活動(dòng),對(duì)社區(qū)部分捐款戶(hù)數(shù)進(jìn)行調(diào)查和分組統(tǒng)計(jì)后,將數(shù)據(jù)整理成如圖所示的統(tǒng)計(jì)表和統(tǒng)計(jì)圖(圖中信息不完整).已知A、B兩組捐款戶(hù)數(shù)的比為15

組別

捐款額(x)元

戶(hù)數(shù)

A

1≤x50

a

B

50≤x100

10

C

100≤x150

D

150≤x200

E

x≥200

請(qǐng)結(jié)合以上信息解答下列問(wèn)題.

1a= ,本次調(diào)查樣本的容量是 ;

2)補(bǔ)全捐款戶(hù)數(shù)分組統(tǒng)計(jì)表和捐款戶(hù)數(shù)統(tǒng)計(jì)圖1”

3)若該社區(qū)有1500戶(hù)住戶(hù),請(qǐng)根據(jù)以上信息估計(jì),全社區(qū)捐款不少于150元的戶(hù)數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校學(xué)生的身高情況,王老師隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

組別

身高

身高情況分組表

根據(jù)圖表提供的信息,回答下列問(wèn)題:

1)樣本中,女生身高在組的人數(shù)有_________人;

2)在上面的扇形統(tǒng)計(jì)圖中,表示組的扇形的圓心角是_________°;

3)已知該校共有男生800人,女生760人,請(qǐng)估計(jì)該校身高在之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, , .點(diǎn)OBC的中點(diǎn)點(diǎn)D沿BAC方向從B運(yùn)動(dòng)到C設(shè)點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為,1中某條線(xiàn)段的長(zhǎng)為y,若表示yx的函數(shù)關(guān)系的大致圖象如圖2所示,則這條線(xiàn)段可能是圖1中的( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離:;

在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離:;

在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離:

在數(shù)軸上點(diǎn)、分別表示數(shù)、,則兩點(diǎn)之間的距離

請(qǐng)回答下列問(wèn)題:

)數(shù)軸上表示的兩點(diǎn)之間的距離是__________

數(shù)軸上表示數(shù)的兩點(diǎn)之間的距離表示為__________.?dāng)?shù)軸上表示數(shù)____________________的兩點(diǎn)之間的距離表示為

)七年級(jí)研究性學(xué)習(xí)小組在數(shù)學(xué)老師指導(dǎo)下,對(duì)式子進(jìn)行探究:

①請(qǐng)你在草稿紙上畫(huà)出數(shù)軸,當(dāng)表示數(shù)的點(diǎn)在之間移動(dòng)時(shí),的值總是一個(gè)固定的值為:__________.(直接寫(xiě)出結(jié)果)

②請(qǐng)你在草稿紙上畫(huà)出數(shù)軸,要使,數(shù)軸上滿(mǎn)足條件的點(diǎn)表示的數(shù)字是:__________(直接寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案