當(dāng)△ABC的面積S一定時,它的底a與高h(yuǎn)的關(guān)系式是________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•永嘉縣一模)如圖,Rt△ABC中,∠B=Rt∠,點D在邊AB上,過點D作DG∥AC交BC于點G,分別過點D,G作DE∥BC,F(xiàn)G∥AB,DE與FG交于點O.當(dāng)陰影面積等于梯形ADOF的面積時,則陰影面積與△ABC的面積之比為
5
16
5
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新華區(qū)一模)已知:等邊△ABC的面積為S,Dn,En,F(xiàn)n(n為正整數(shù)0分別是AB,BC,CA邊上的點,連接DnEn,EnFn,F(xiàn)nDn,可得△DnEnFn
如圖1,當(dāng)AD1=BE1=CF1=
1
2
AB時,我們?nèi)菀椎玫健鱀1E1F1是等邊三角形,且SAD1F1=S△D1E1F1=
1
4
S.
探究論證:
(1)如圖2,當(dāng)AD2=BE2=CF2=
1
3
AB時,
①△D2E2F2
等邊
等邊
三角形(填寫“等腰”或“等邊”或“不等邊”);
SAD2F2=
2
9
S
2
9
S
;S△D2E2F2=
1
3
S
1
3
S
(用含S的代數(shù)式表示);
③請說明以上結(jié)論的正確性.
猜想發(fā)現(xiàn):
(2)如圖3,當(dāng)ADn=BEn=CFn=
1
n+1
AB時,
①△DnEnFn
等邊
等邊
三角形(填寫“等腰”或“等邊”或“不等邊”);
S△ADnFn=
n
(n+1)2
S
n
(n+1)2
S
;S△DnEnFn=
n2-n+1
(n+1)2
S
n2-n+1
(n+1)2
S
(用含S的代數(shù)式表示).
實際應(yīng)用:
(3)學(xué)校有一塊面積為49m2的等邊△ABC空地,按如圖4所示分割,其中AD6=BE6=CF6=
1
7
AB,計劃在△D6E6F6內(nèi)栽種花卉,其余地方鋪草坪,則栽種花卉(即陰影部分)的面積為多少m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南昌模擬)已知雙曲線y=
k
x
和直線AB的圖象交于點A(-3,4),AC⊥x軸于點C.
(1)求雙曲線y=
k
x
的解析式;
(2)當(dāng)直線AB繞著點A轉(zhuǎn)動時,與x軸的交點為B(a,0),并與雙曲線y=
k
x
另一支還有一個交點的情形下,求△ABC的面積S與a之間的函數(shù)關(guān)系式,并指出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課標(biāo) 讀想練同步測試 七年級數(shù)學(xué)(下) 北師大版 題型:022

當(dāng)△ABC的面積S一定時,它的底a與高h(yuǎn)的關(guān)系式是________.

查看答案和解析>>

同步練習(xí)冊答案