【題目】如圖,在等邊三角形ABC中,AB=5,在AB邊上有一點P,過點PPMBC,垂足為M,過點MMNAC,垂足為N,過點NNQAB,垂足為Q.當PQ=1時,BP=_____

【答案】

【解析】由題意可知P點可能靠近B點,也可能靠近A點,所以需要分為兩種情況:設BM=x,AQ=y,

P靠近B點,由題意可得∠BPM=30°,根據(jù)直角三角形的性質(zhì)可得BP=2BM=2x,AN=2y,CM=2CN=10-4y,再根據(jù)AB=BC=5,PQ=1,列方程組,解出x、y即可求得BP的長;

若點P靠近A點,同理可得,求解即可.

BM=x,AQ=y,

P靠近B點,如圖

∵等邊△ABC,

∴AB=BC=AC=5,∠A=∠B=∠C=60°

∵PM⊥BC

∴∠BMP=90°

Rt△BMP中,∠BPM=30°,

∴BM=BP

BP=2x

同理AN=2y,

CN=5-2y

Rt△BCM中,CM=2CN=10-4y

∵AB=BC=5,PQ=1

解得

∴BP=2x=

若點P靠近A點,如圖

由上面的解答可得BP=2x,AQ=y,CM=10-4y

解得

∴BP=2x=

綜上可得BP的長為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“五一”期間,申老師一家自駕游去了離家170千米的某地,下面是他們離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)關系的圖像.

(1)他們出發(fā)半小時后,離家多少千米?

(2)求出AB段的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內(nèi)已知,,分別是的平分線,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司員工分別住在A、B、C三個住宅區(qū),A區(qū)有25人,B區(qū)有15人,C區(qū)有10人,三個區(qū)在一條直線上,位置如圖所示,公司的接送車打算在此間只設一個?奎c,為使所有員工步行到?奎c的路程總和最少,那么停靠點的位置應設在( 。

A. A區(qū) B. B區(qū) C. A區(qū)或B區(qū) D. C區(qū)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 中,AB=AC,以AB為直徑作⊙O,與BC交于點D,過D作AC的垂線,垂足為E.證明:

(1)BD=DC;
(2)DE是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150/分的速度騎行一段時間,休息了5分鐘,再以m/分的速度到達圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分)的關系如圖所示,請結(jié)合圖像,解答下列問題:

1a= b= ,m=

2若小軍的速度是120/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;

3)在(2)的條件下,爸爸自第二次出發(fā)至到達圖書館前,何時與小軍相距100米?

查看答案和解析>>

同步練習冊答案