已知,拋物線y=ax2+bx+c的部分圖象如圖,則下列說法:①對(duì)稱軸是直線x=1;②當(dāng)-1<x<3時(shí),y<0;③a+b+c=-4;④方程ax2+bx+c+5=0無實(shí)數(shù)根.其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:①可直接觀察得對(duì)稱軸;②由點(diǎn)(-1,0)及對(duì)稱軸x=1,可得另一交點(diǎn)(3,0),從而判斷y<0時(shí),x的范圍;③設(shè)交點(diǎn)式,把點(diǎn)(0,-3)代入可求拋物線解析式,判斷a+b+c的值;④可求出頂點(diǎn)坐標(biāo)為(1,-4),就能知道y=ax2+bx+c的最小值是-4,ax2+bx+c+5≥1,方程無實(shí)數(shù)根.
解答:解:①由圖象可知,對(duì)稱軸是直線x=1,正確;
②對(duì)稱軸是直線x=1,拋物線與x軸的一個(gè)交點(diǎn)是(-1,0),則另一個(gè)交點(diǎn)是(3,0),所以當(dāng)-1<x<3時(shí),y<0,正確;
③已知點(diǎn)(-1,0),(3,0),設(shè)拋物線的交點(diǎn)式y(tǒng)=a(x+1)(x-3),再把點(diǎn)(0,-3)代入得a=1,所以y=(x+1)(x-3)=x2-2x-3,故a+b+c=1-2-3=-4,正確;
④因?yàn)閥=x2-2x-3=(x-1)2-4≥-4,所以y+5≥1,即ax2+bx+c+5≥1,方程無實(shí)數(shù)根,正確.
故選D.
點(diǎn)評(píng):綜合考評(píng)了二次函數(shù)的圖象和性質(zhì)中的對(duì)稱性,以及待定系數(shù)法求拋物線方程及頂點(diǎn)坐標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對(duì)邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對(duì)稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為
3
,拋物線與x軸交于點(diǎn)P、Q,問是否精英家教網(wǎng)存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關(guān)系:a>b>c.
(1)求證:拋物線與直線一定有兩個(gè)不同的交點(diǎn);
(2)設(shè)拋物線與直線的兩個(gè)交點(diǎn)為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實(shí)數(shù)k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點(diǎn)P,如圖所示.
(1)頂點(diǎn)P的坐標(biāo)是
(-1,4)
(-1,4)
;
(2)若直線y=ax+b經(jīng)過另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對(duì)稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線數(shù)學(xué)公式,其中a、b、c是△ABC的∠A、∠B、∠C的對(duì)邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對(duì)稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為數(shù)學(xué)公式,拋物線與x軸交于點(diǎn)P、Q,問是否存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省綿陽市南山中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對(duì)邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對(duì)稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為,拋物線與x軸交于點(diǎn)P、Q,問是否存在過P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案