【題目】如圖,四邊形ABCD是菱形,∠A60°,AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

【答案】

【解析】

連接BD,易證△DAB是等邊三角形,即可求得△ABD的高為,再證明△ABG≌△DBH,即可得四邊形GBHD的面積等于△ABD的面積,由圖中陰影部分的面積為S扇形EBFSABD即可求解.

如圖,連接BD

∵四邊形ABCD是菱形,∠A60°,

∴∠ADC120°

∴∠1=∠260°,

∴△DAB是等邊三角形,

AB2

∴△ABD的高為,

∵扇形BEF的半徑為2,圓心角為60°

∴∠4+560°,∠3+560°,

∴∠3=∠4

設(shè)AD、BE相交于點(diǎn)G,設(shè)BF、DC相交于點(diǎn)H

在△ABG和△DBH中,

∴△ABG≌△DBHASA),

∴四邊形GBHD的面積等于△ABD的面積,

∴圖中陰影部分的面積是:S扇形EBFSABD×2×

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過(guò)上任意一點(diǎn),作軸垂線交于點(diǎn),交軸于點(diǎn),作軸垂線,交于點(diǎn),交軸于點(diǎn),直線分別交軸,軸于點(diǎn),則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),OAB=30°,若點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,則經(jīng)過(guò)點(diǎn)B的反比例函數(shù)解析式為( 。

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC和△ADE中,AB=AC,AD=AE,∠BAC=DAE=α(0°α≤90°),點(diǎn)F,G,P分別是DEBC,CD的中點(diǎn),連接PF,PG

1)如圖①,α=90°,點(diǎn)DAB上,則∠FPG= °

2)如圖②,α=60°,點(diǎn)D不在AB上,判斷∠FPG的度數(shù),并證明你的結(jié)論;

3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)PF的長(zhǎng)最大時(shí),FG的長(zhǎng)為 (用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】受疫情影響,很多學(xué)校都紛紛響應(yīng)了“停課不停學(xué)”的號(hào)召,開(kāi)展線上教學(xué)活動(dòng).為了解學(xué)生上網(wǎng)課使用的設(shè)備類型,某校從“電腦、手機(jī)、電視、其它”四種類型的設(shè)備對(duì)學(xué)生做了一次抽樣調(diào)查.調(diào)查結(jié)果顯示,每個(gè)學(xué)生只選擇了以上四種設(shè)備類型中的一種,現(xiàn)將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息,解答下列問(wèn)題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)若該校共有1500名學(xué)生,估計(jì)全校用手機(jī)上網(wǎng)課的學(xué)生共有___________名;

3)在上網(wǎng)課時(shí),老師在AB、C、D四位同學(xué)中隨機(jī)抽取一名學(xué)生回答問(wèn)題,求兩次都抽取到同一名學(xué)生回答問(wèn)題的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大樓的頂部樹(shù)有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1,AB=10AE=15.(i=1是指坡面的鉛直高度BH與水平寬度AH的比)

1)求點(diǎn)B距水平面AE的高度BH;

2)求廣告牌CD的高度.

(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1.參考數(shù)據(jù):1.414,1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象交反比例函數(shù)yx0)的圖象于點(diǎn)A、B,交x軸于點(diǎn)C

1)求m的取值范圍;

2)若點(diǎn)A的坐標(biāo)是(2,-4),且,求m的值和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)有一等腰直角三角板(∠ACB=90°)和一直線MN,過(guò)點(diǎn)CCEMN于點(diǎn)E,過(guò)點(diǎn)BBFMN于點(diǎn)F.當(dāng)點(diǎn)E與點(diǎn)A重合時(shí)(如圖①),易證:AF+BF=2CE;當(dāng)三角板繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至圖②、圖③的位置時(shí),上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,線段AF、BF、CE之間又有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的猜想,請(qǐng)直接寫(xiě)出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開(kāi)軌道,第一顆彈珠彈出后其速度(米/分鐘)與時(shí)間(分鐘)前2分鐘滿足二次函數(shù),后3分鐘滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2/分鐘.

1)求第一顆彈珠的速度(米/分鐘)與時(shí)間(分鐘)之間的函數(shù)關(guān)系式;

2)第一顆彈珠彈出1分鐘后,彈出第二顆彈珠,第二顆彈珠的運(yùn)行情況與第一顆相同,直接寫(xiě)出第二顆彈珠的速度(米/分鐘)與彈出第一顆彈珠后的時(shí)間(分鐘)之間的函數(shù)關(guān)系式;

3)當(dāng)兩顆彈珠同時(shí)在軌道上時(shí),第____分鐘末兩顆彈珠的速度相差最大,最大相差______;

4)判斷當(dāng)兩顆彈珠同時(shí)在軌道上時(shí),是否存在某時(shí)刻速度相同?請(qǐng)說(shuō)明理由,并指出可以通過(guò)解哪個(gè)方程求出這一時(shí)刻.

查看答案和解析>>

同步練習(xí)冊(cè)答案