【題目】如圖是某居民小區(qū)的一塊長為b米,寬為2a米的長方形空地,為了美化環(huán)境,準(zhǔn)備在這個長方形的四個頂點處各修建一個半徑為a米的扇形花臺,然后在花臺內(nèi)種花,其余部分種草.如果建造花臺及種花費用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一套房子的平面圖,尺寸如圖.
(1)這套房子的總面積是多少?(用含x、y的代數(shù)式表示)
(2)如果x=1.8米,y=1米,那么房子的面積是多少平方米?如果每平方米房價為5萬元,那么房屋總價多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點為-8,小烏龜從A地出發(fā)沿數(shù)軸往B地方向前進,第一次前進1米,第二次后退2米,第三次再前進3米,第四次又后退4米,……,按此規(guī)律行進,(數(shù)軸的一個單位長度等于1米)
(1)求B地在數(shù)軸上表示的數(shù);
(2)若B地在原點的左側(cè),經(jīng)過第五次行進后小烏龜?shù)竭_點P,第六次行進后到達點Q,則點P和點Q到點A的距離相等嗎?請說明理由;
(3)若B地在原點的右側(cè),那么經(jīng)過30次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,四邊形OABC為矩形,A(6,0),C(0,3),點M在邊OA上,且M(4,0),P、Q兩點同時從點M出發(fā),點P沿x軸向右運動;點Q沿x軸先向左運動至原點O后,再向右運動到點M停止,點P隨之停止運動.P、Q兩點運動的速度分別為每秒1個單位、每秒2個單位.以PQ為一邊向上作正方形PRLQ.設(shè)點P的運動時間為t(秒),正方形PRLQ與矩形OABC重疊部分(陰影部分)的面積為S(平方單位).
(1)用含t的代數(shù)式表示點P的坐標(biāo).
(2)分別求當(dāng)t=1,t=3時,線段PQ的長.
(3)求S與t之間的函數(shù)關(guān)系式.
(4)直接寫出L落在第一象限的角平分線上時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護視力,學(xué)校開展了全校性的視力保健活動,活動前,隨機抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學(xué)生的視力,結(jié)果如表所示
分組 | 頻數(shù) |
4.0≤x<4.2 | 2 |
4.2≤x<4.4 | 3 |
4.4≤x<4.6 | 5 |
4.6≤x<4.8 | 8 |
4.8≤x<5.0 | 17 |
5.0≤x<5.2 | 5 |
(1)求活動所抽取的學(xué)生人數(shù);
(2)若視力達到4.8及以上為達標(biāo),計算活動前該校學(xué)生的視力達標(biāo)率;
(3)請選擇適當(dāng)?shù)慕y(tǒng)計量,從兩個不同的角度評價視力保健活動的效果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)圖(1)是一個長為2m,寬為2n的矩形,把此矩形沿圖中虛線用剪刀均分為四個小長方形,然后按圖(2)的形狀拼成一個大正方形.請問:這兩個圖形的什么量不變?
(2)把所得的大正方形面積比原矩形的面積多出的陰影部分的面積用含m,n的代數(shù)式表示為(m-n)2或m2-2mn+n2 .
(3)由前面的探索可得出的結(jié)論是:在周長一定的矩形中,當(dāng) 時,面積最大.
(4)若矩形的周長為24cm,則當(dāng)邊長為多少時,該圖形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊BC繞點C逆時針旋轉(zhuǎn)90°到CE,連接AC、DE、BE,AC與DE相交于F,則∠AFD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解下面內(nèi)容,并解決問題:
善于思考的小明在學(xué)習(xí)《實數(shù)》一章后,自己探究出了下面的兩個結(jié)論:
①,,和都是9×4的算術(shù)平方根,
而9×4的算術(shù)平方根只有一個,所以=.
②,,和都是9×16的算術(shù)平方根,
而9×16的算術(shù)平方根只有一個,所以 .
請解決以下問題:
(1)請仿照①幫助小明完成②的填空,并猜想:一般地,當(dāng)a≥0,b≥0時,與、之間的大小關(guān)系是怎樣的?
(2)再舉一個例子,檢驗?zāi)悴孪氲慕Y(jié)果是否正確.
(3)運用以上結(jié)論,計算:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》(1261年)一書中,用下圖的三角形解釋二項和的乘方規(guī)律.楊輝在注釋中提到,在他之前北宋數(shù)學(xué)家賈憲(1050年左右)也用過上述方法,因此我們稱這個三角形為“楊輝三角”或“賈憲三角”.楊輝三角兩腰上的數(shù)都是,其余每一個數(shù)為它上方(左右)兩數(shù)的和.事實上,這個三角形給出了的展開式(按的次數(shù)由大到小的順序)的系數(shù)規(guī)律.例如,此三角形中第三行的個數(shù),恰好對應(yīng)著展開式中的各項系數(shù),第四行的個數(shù),恰好對應(yīng)著展開式中的各項系數(shù),等等.請依據(jù)上面介紹的數(shù)學(xué)知識,解決下列問題:
(1)寫出的展開式;
(2)利用整式的乘法驗證你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com